■定積分∫(0,∞)1/(1+x^6)dxの計算(その10)

∫(0,∞)1/(1+x^6)dx=2π/3は間違いのようである。

===================================

∫(0,∞)1/(1+x^2)dx=π/2{sinπ/2}=π/2

∫(0,∞)1/(1+x^4)dx=π/4{sinπ/4+sin3π/4}=π/4・√2

∫(0,∞)1/(1+x^6)dx=π/6{sinπ/6+sin3π/6+sin5π/6}=π/2 ???

table of integrals,series and products

===================================

同書の別の公式では

∫(0,∞)1/(1+x^n)dx=π/n・cosecπ/n=1/n・B(1/n,(n-1)/n)

π/n・cosecπ/n=π/n・1/sin(π/n)

n=2→π/2

n=4→π/4・2/√2=π√2/4

n=6→π/6・2/1=π/3・・・公式の適用間違いであった

===================================

これを使えばもっとΓ(1/n)Γ((n-1)/n)が求められる。

π/n・cosecπ/n=π/n・1/sin(π/n)=1/n・B(1/n,(n-1)/n)

π・cosecπ/n=π・1/sin(π/n)=B(1/n,(n-1)/n)=Γ(1/n)Γ((n-1)/n)

π・1/sin(π/8)=Γ(1/8)Γ(7/8)

π・1/sin(π/10)=Γ(1/10)Γ(9/10)

π・1/sin(π/12)=Γ(1/12)Γ(11/12)

===================================

sin(π/8)=1/2・(2-√2)^1/2

sin(π/10)=(√5-1)/4

sin(π/12)=1/4・(√6-√2)^1/2

===================================