■定積分∫(0,∞)1/(1+x^6)dxの計算(その6)
∫(0,∞)1/(1+x^6)dx=2π/3は間違いのようである。
===================================
∫(0,∞)1/(1+x^2)dx=π/2{sinπ/2}=π/2
∫(0,∞)1/(1+x^4)dx=π/4{sinπ/4+sin3π/4}=π/4・√2
∫(0,∞)1/(1+x^6)dx=π/6{sinπ/6+sin3π/6+sin5π/6}=π/2 ???
table of integrals,series and products
===================================
同書の別の公式では
∫(0,∞)1/(1+x^n)dx=π/n・cosecπ/n=1/n・B(1/n,(n-1)/n)
π/n・cosecπ/n=π/n・1/sin(π/n)
n=2→π/2
n=4→π/4・2/√2=π√2/4
n=6→π/6・2/1=π/3・・・公式の適用間違いであった
===================================