■三角形の角の二等分線の長さ(その1)

三角形ABCの三辺の長さをa,b,cとする。このとき、角Aの二等分線の長さhは?

===================================

二等分線は辺aをc:bに内分するからca/(b+c):ba/(b+c)

cost1={ca/(b+c)}^2+h^2-c^2}/2cah/(b+c)

cost2={ba/(b+c)}^2+h^2-b^2}/2bah/(b+c)

===================================

これらは補角をなすから

2bah/(b+c)・{ca/(b+c)}^2+h^2-c^2}=-2cah/(b+c)・{ba/(b+c)}^2+h^2-b^2}

b・{ca/(b+c)}^2+h^2-c^2}=-c・{ba/(b+c)}^2+h^2-b^2}

(b+c)・h^2=-c・{ba/(b+c)}^2-b^2}-b・{ca/(b+c)}^2-c^2}

(b+c)・h^2=-b^2c・{a/(b+c)}^2-bc^2・{a/(b+c)}^2+b^2c+bc^2=bc(b+c){1-{a/(b+c)}^2}

h^2=bc{1-{a/(b+c)}^2}

===================================