■j(z)関数の特殊値? (その7)
シュナイダーの定理
→虚2次体でない任意の代数的数zに対してj(z)の値は超越数になる
以下は虚2次体の場合
j(i)=1728=12^3
j(i√2)=8000=20^3
j((1+i√3)/2=0
j((1+i√7)/2=-3375=-15^3
j((1+i√11)/2=-32^3
j((1+i√19)/2=-96^3
j((1+i√43)/2)=-960^3
j((1+i√67)/2)=-5280^3
j((1+i√163)/2)=-640320^3
j(i)=1728,j(ω)=0のようにきわめて超越的な関数が、整数になってしまうのである。
===================================