■双曲平面のモデル(その10)
(問)直線をn個の点で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか,の答は
Sn=(n,0)+(n,1)
(問)平面をn本の線で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか,の答は
Sn=(n,0)+(n,1)+(n,2)=(n^2+n+2)/2
S0=1,S1=2,S2=4,S3=7,
S4=11,S5=16,S6=22,S7=29,
S8=37,S9=46,S10=56,・・・
(問)空間をn枚の平面で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか,の答は
Sn=(n,0)+(n,1)+(n,2)+(n,3)=(n3+5n+6)/6
S0=1,S1=2,S2=4,S3=8,
S4=15,S5=26,S6=42,S7=64,
S8=93,S9=130,S10=176,・・・
一般に,
(問)m次元空間をn枚の超平面で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか,の答は
Sn=(n,0)+(n,1)+(n,2)+(n,3)+・・・+(n,m)
となるが,これらの問題は二項係数で表現するときれいなパターンになる.
===================================
(問)1つの円をn本の弦で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか?
実はこの問題は
(問)平面をn本の線で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか
と等価になる.
Sn=(n,0)+(n,1)+(n,2)=(n^2+n+2)/2
(問)1つの球をn個の面で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数はいくつになるか?
この問題も
(問)空間をn枚の平面で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか
に等価で,答は
Sn=(n,0)+(n,1)+(n,2)+(n,3)=(n3+5n+6)/6
新しくナイフを入れて増加する3次元領域の数は,新しい平面上にそれがそれまでの平面と交わってできる2次元領域の数に等しいからである.
立方体にナイフを6回入れる場合は27個の小さい立方体を作ることができるが,形にこだわらなければ最大42個の断片にできるというわけである.
===================================