■ベキ和と未定係数法(その28)
S1=Σk=n(n+1)/2
S2=Σk^2=n(n+1)(2n+1)/6
S3=Σk^3=n^2(n+1)^2/4
が多くの読者にとってお馴染みの公式であろう.さらに,
S4=Σk^4=n(n+1)(2n+1)(3n^2+3n−1)/30
S5=Σk^5=n^2(n+1)^2(2n^2+2n−1)/12
S6=Σk^6=n(n+1)(2n+1)(3n^4+6n^3−3n+1)/42
S7=Σk^7=n^2(n+1)^2(3n^4+6n^3−n^2−4n+2)/24
S8=Σk^8=n(n+1)(2n+1)(5n^6+15n^5+5n^4−15n^3−n^2+9n−3)/90
と続く.
Sk〜n^(k+1)/(k+1)
===================================
この近似式は
nΣ(1,n)i^(k-1)-Σ(1,n)i^k=Σ(p=1,n-1){Σ(1,p)i^(k-1)}
(n+1)Σ(1,n)i^k=Σ(1,n)i^(k+1)+Σ(p=1,n){Σ(1,p)i^(k)}
に基づいているが、4乗ベキに対しても
Σi^4=(n/5+1/5)n(n+1/2){(n+1)n-1/3}
へと翻訳できるものである
===================================
S4=Σk^4=n(n+1)(2n+1)(3n^2+3n−1)/30
1^4+2^4+3^4+4^4+・・・=1/5・n^5+a・n^4+b・n^3+c・n^2+d・n
1=1/5+a+b+c+d
17=32/5+16a+8b+4c+2d
98=243/5+81a+27b+8c+3d
354=1024/5+256a+64b+16c+4d
a=1/2,b=1/3,c=0,d=-1/30
===================================