仭僀乕僞娭悢亖僥乕僞娭悢乮偦偺俁俀乯
儌僲僪儘儈乕曄姺偺摿惈懡崁幃偼
兂=儺(兩-exp(2兾imi/h)
偱梌偊傜傟傞丅偙傟偼墌暘懡崁幃側偺偱場悢暘夝偝傟傞丅
h=僐僋僙僞乕悢
僐僋僙僞乕曄姺偺屌桳抣傪exp(2兾imi/h)偲偟偰丄0亙m1亙m2亙丒丒丒亙ml亙倛偲抲偄偨偲偒丄偙傟傜傪儀僉巜悢偲屇傇偑丄
degPi=mi+1
側傞娭學幃偑惉傝棫偮丅
亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖
a) A3=[3,3]
The truncated octahedron is the primitive of A3 (also non-primitive of B3) and the characteristic equation results in the second kind of Chebyshev polynomial;
U3(x)=8x3-4x=0, m={mi}={1,2,3}.
儼mi=1+2+3=6 (Antipodal distance of primitive n-parallelotope is given as n(n+1)/2.)
儺(mi+1)=2=24 ((n+1)! vertices in primitive n-parallelotope.)
Note that {mi+1}={2,3,4} reveals double, triple and quadruple rotational symmetry and 兂2(x) 兂3(x) 兂4(x) implies factorization of finite discrete space.
亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖
b) B6=[3,3,3,3,4]
The characteristic equation (Fig. 6a) has resulted in the first kind of Chebyshev polynomial.
T6(x)=32x6-48x4+18x2-1=0, m={mi}={1,3,5,7,9,11}. G(x)= 兂2(x) 兂4(x) 兂6(x) 兂8(x) 兂10(x) 兂12(x).
儼mi=1+3+5+7+9+11=36 (Antipodal distance is 36 and n2 in bi-submodular n-polytope.)
儺(mi+1)=2012=46080 (=2n! vertices in bi-submodular n-polytope.)
Note that the number of reflecting hyperplanes and parallel-edge pairs of the primitives are n(n+1)/2 in An and n2 in Bn.
亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖
c) H4=[3,3,5]
The characteristic equation (Fig. 6b) has resulted in linear combination of Chebyshev polynomials.
2冄2T4(x)-U4(x)=0, 冄=(1+併5)/2, m={mi}={1,11,19,29}. G(x)= 兂2(x) 兂12(x) 兂20(x) 兂30(x).
儼mi=1+11+19+29=60, antipodal distance is 60.
儺(mi+1)=2122030=14400 vertices.
亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖亖