■ラグランジュ・ルジャンドル・ラマヌジャン(その26)

 ラグランジュの定理:どんな自然数でも

  x^2+y^2+z^2+w^2

の形に書ける.それでは,どんな自然数でも

  x^2+2y^2+3z^2+4w^2

で書けるだろうか?

===================================

【1】n元2次形式による整数の表現と290の予想

 正定値n元2次形式(変数nの数は任意とする)において,

  1,2,3,5,6,7,10,13,14,15

  17,19,21,22,23,26,29,30,31

  34,35,37,42,58,93,110,145,203,290

の数を表現するならば,すべての正の整数を表現するというのが290予想である.

 5変数2次形式,たとえば,

  a^2+2b^2+5c^2+5d^2+15e^2

はどの整数も表すことができるが,

  2a^2+ab+4b^2+bc+c^2+29d^2+29de+29e^2

は290だけを表すことができない.

 4変数2次形式では,たとえば,

  2w^2+3x^2+4y^2+5z^2

は1だけを表すことができない.

  w^2+2x^2+5y^2+5z^2

は15だけを表すことができない.

 普遍的な3変数2次形式は存在しない.たとえば,

  f(x,y,z)=x^2+2y^2+yz+4z^2

は1から30までの整数をすべて表すが,31を表すことはできない.他の3元2次形式はこんなにうまい具合にはなっておらず,31以下の整数の中のどれかを表すことができないのである.

===================================

【2】15の定理と整数の表現(驚くべき定理)

 驚くべきことに,1996年,コンウェイとシュニーバーガーは正定値n元2次形式(変数nの数は任意とする)が1から15までのすべての整数を表せば,それがすべての正の整数を表すことを示した(15の定理).

 もっと限定していえば

  1,2,3,5,6,7,10,14,15

の9つの数を表現するならば,すべての正の整数を表現するという定理である.

 15の定理は290予想のbest-possibleな解決であったが,この定理はルジャンドルの4平方和定理「何種類かの4変数2次形式,たとえば,

  x^2+y^2+z^2+mw^2   (m=1,2,3,4,5,6,7)

はすべての正の整数を表現することができる」も内包していて,

  1=1^2,2=1^2+1^2,3=1^2+1^2+1^2,5=2^2+1^2

  6=2^2+1^2+1^2,7=2^2+1^2+1^2+1^2,10=3^2+1^2

  14=3^2+2^2+1^2,15=3^2+2^2+1^2+1^2

===================================

【3】まとめ

 それらは

  x^2+y^2+z^2+w^2からx^2+2y^2+5z^2+10w^2まで

すべてAx^2+By^2+Cz^2+Dw^2の形をしていて,54通りあることが知られている.

===================================