■メビウス関数とディリクレ級数(その14)

約数の和関数をσ(n)、オイラーのトーシェント関数をφ(n)とするとき、

ζ(s)ζ(s-1)=Σσ(n)/n^s

ζ(s-1)/ζ(s)=Σφ(n)/n^s

が成り立つ。

また、約数の和関数σ(n)について

σ(n)<exp(γ)nlnlnnがn>5040のすべてのnについて成り立つこととリーマン予想が真であることは同値である。

これらのことから、σ(n)、φ(n)のおおまかな上界と下界を求めることは意味があることであると考えられる。

===================================

 実は,円周法に基づく漸近公式の結果を正確に証明するだけでも,長くてこみ入った理論が必要になります.そこで漸近公式の概要だけを簡単に述べますが,σ(k)をkの約数の和とすると,p(n)に対する漸化式

  p(n)=1/nΣσ(k)p(n-k)

において,σ(k)の漸近的振る舞い

  1/n^2Σσ(k)〜π^2/12

を用いると,nが大きい場合の分割数の漸近挙動

  p(n)〜exp(π√(2n/3))/4n√3

を得ることができます.このことから,p(n)は準指数関数と考えることができます(p(n)^(1/n)→1).

===================================

【1】ディリクレによる約数関数の漸近挙動

 ここで,約数の総和関数σ(k)の漸近挙動

  1/n^2Σσ(k)〜π^2/12

がでましたが,1838年,ディリクレはσ(n)の平均値が,大きいnに対して  1/nΣσ(k)〜π^2n/12

を示しました.

  1/25Σσ(k)=20.88 → ディリクレの評価はπ^2・25/12=20.56

  1/50Σσ(k)=41.6 → ディリクレの評価はπ^2・50/12=41.12

  1/100Σσ(k)=82.99 → ディリクレの評価はπ^2・100/12=82.25

 また,約数の個数関数d(k)の平均値の漸近挙動について,ディリクレは

  1/nΣd(k)〜ln(n)-2γ+1

を示しました.

  1/25Σd(k)=3.48 → ディリクレの評価はln(25)-2γ+1=3.37

  1/50Σd(k)=4.14 → ディリクレの評価はln(50)-2γ+1=4.07

  1/100Σd(k)=4.82 → ディリクレの評価はln(100)-2γ+1=4.76

===================================

【2】オイラー関数φ(n)の漸近挙動

 オイラー関数φ(n)(nより小さくnの互いに素な正整数の個数関数)は多くの興味深い性質をもっています.

  σ(n)+φ(n)=nd(n)

はnが素数であるための必要十分条件です.その上界・下界は

  n^(1/2)/n<φ(n)≦n-1

で与えられますが,1857年,リュービルは

  ζ(s-1)/ζ(s)=Σφ(n)/n^s

を示しました.

 また,オイラー関数φ(n)の平均値については

  1/nΣφ(k)/k(φ(n)の平均/n)〜{Σ1/n^2}^(-1)=6/π^2

  1/n^2Σφ(k)〜3/π^2

のようになります.すなわち,大きいnの値に対して,オイラー関数φ(n)の平均値は

  1/nΣφ(k)〜3n/π^2

で近似されます.

 位数nのファレイ分数の個数は

  1+Σφ(k)

ですが,大きいnに対して,この和は3(n/π)^2で近似されることになります.また,1883年,シルベスターは位数nのファレイ分数の和が

  (1+Σφ(k))/2

であることを示しました.

===================================