■ニュートンの最大接吻数問題
1つの10円玉を机の上において,それと触れ合うようにかつお互いに重ならないようにして,6個の10円玉を置くことができます.一般に,n次元ユークリッド空間において,1つの単位球に同時に接触することのできる単位球の最大個数τn は接吻数(kissing number)あるいは接触数(contact number)と呼ばれていて,最密充填構造と深い関連があります.
10円玉の例からわかるようにτ2=6ですが,n≧3のとき,τn はどうなるでしょうか? まず,3次元の場合,単位球のまわりに面心立方格子状に単位球を置いた場合の接触点
1/√2(±1,±1,0)
1/√2(±1,0,±1)
1/√2(0,±1,±1)
を考えてみると,これら12個の相異なる2点に対応するベクトルの内積は,−1,±1/2,0のいずれかであり,したがって,その間の角度(球面距離)は60度以上となりますから,これらの点で接するように12個の単位球を置くことができます.したがって,τ3≧12は直ちにわかります.
実際,正20面体の12個の頂点に対して,そこで接するように12個の単位球を置くことができます.この場合,頂点間の角度は約63゜26′になり,12個の球は互いに接触しておりません.少しだけなら自由に動かせるという状況ですから,その隙間を一つに集めたらもう一個球が入るのではないでしょうか? ところが,これができるかできないかはあまり自明ではありません.
球の最大接触数τ3については,1694年にケンブリッジ大学におけるニュートンとグレゴリーの間で議論され,ニュートンは12を,グレゴリーは13を主張したといわれています.結局,ニュートンは12個が最大であるという証明ができず,グレゴリーも13個並べたわけではないので,ニュートンの13球問題と呼ばれるこの論争は引き和けに終わりました.1874年,ホッペが12個が最大であることという証明を試みましたが,不備があり,ようやく完全な証明がなされたのは1953年,ファン・デル・ヴェルデンとシュッテによってです.つまり,3次元空間内で1つの球には同時に12個の球しか接することができません.
ケプラー予想に比べれば容易に決着するような問題に思えますが、3次元のときは12個という解が得られるまで非常に長い年月がかかったことになります.
===================================