■正17角形の作図とガウスの公式(その46)
2cos(2π/7)-2cos(π/7)+2cos(4π/7)=-1
2sin(2π/7)-2sin(π/7)+2sin(4π/7)=√7
4cos(2π/13)-4cos(5π/13)+4cos(6π/13)=√13-1
と計算された。
===================================
なお,
[参]栗原将人「ガウスの数論世界をゆく」数学書房によると
[1]sin(2π/7)+sin(4π/7)+sin(8π/7)=(√7)/2
[2]sin(2π/13)+sin(6π/13)+sin(18π/13)=(26−6√13)^1/2/4
[3]sin(2π/41)+sin(20π/41)+sin(32π/41)+sin(36π/41)+sin(49π/41)=1/8(A+B−C)^1/2
A=164+12√41
B=(14+2√41)(82−10√41)^1/2
C=16{82+10√41)^1/2
===================================
cos(2π/7)+cos(4π/7)+cos(8π/7)=-1/2
cos(2π/13)+cos(6π/13)+cos(18π/13)=(-1+√13)/4
cos(2π/17)+cos(8π/17)=(-1+√17)/8+{(34-2√17)^1/2}/8
cos(2π/17)=(-1+√17)/16+{(34-2√17)^1/2}/16+1/16・C^1/2
C=68+12root17+2(-1+root17)・(34-2root17)^1/2-16・(34+2root17)
===================================