■正17角形の作図とガウスの公式(その14)
[Q]sin(2π/7)+sin(4π/7)+sin(8π/7)=?
===================================
[1]sin(2π/7)+sin(4π/7)+sin(8π/7)
=−sin(π/7)+sin(3π/7)+sin(5π/7)=S
正弦の和公式において,α=π/(2n+1)とおくと,
Σsin(2k−1)π/(2n+1)=sin^2nπ/(2n+1)/sinπ/(2n+1)
[2]sin(π/7)+sin(3π/7)+sin(5π/7)=sin^23π/7/sinπ/7=−4sin^2π/7+3
[3] [2]−[1]=2sin(π/7)=(−4sin^3π/7+3sinπ/7)^2/sinπ/7−S
[4]2sin^2(π/7)=(−4sin^3π/7+3sinπ/7)^2−S・sinπ/7
===================================