■正17角形の作図とガウスの公式(その13)
cosπ/7+cos3π/7+cos5π/7=1/2
を正弦・余弦の和公式を使って解いてみたい.
===================================
【1】正弦・余弦の和公式
等差級数
S=1+2+3+・・・+n
の値を求めるのに,逆順にして
S=n+(n−1)+(n−2)+・・・+1
辺同士を加えると
2S=(n+1)+(n+1)+(n+1)+・・・+(n+1)
より,
S=n(n+1)/2
これが等差級数の和公式で,これを使うと,たとえば1から100まで数の合計が5050であることが瞬時に計算できることはご存知であろう.
この取り扱いと似た方法で,正弦の和公式
sinα+sin2α+sin3α+・・・+sinnα
=sinnα/2sin(n+1)α/2/sinα/2
を証明してみよう.
(証明)
T=sinα+sin2α+sin3α+・・・+sinnα
T=sinnα+sin(n−1)α+sin(n−2)α+・・・+sinα
ここで,和から積への式
sinα+sinβ=2sin(α+β)/2cos(α−β)/2
を用いると
2T=2sin(n+1)α/2{cos(1−n)α/2+cos(3−n)α/2+・・・+cos(n−3)α/2+cos(n−1)α/2}
両辺にsinα/2を掛けて,積から和への公式
sinαcosβ=1/2{sin(α+β)+sin(α−β)}
を用いると
2Tsinα/2
=sin(n+1)α/2{sinnα/2+sin(1−n/2)α+・・・+sin(−1+n/2)α+sinnα/2}
=2sin(n+1)α/2sinnα/2
同様に,余弦の和公式
cosα+cos2α+cos3α+・・・+cosnα
=sinnα/2cos(n+1)α/2/sinα/2
も証明できる.これらの式において,α=π/nとおくと
Σsinkπ/n=cotπ/2n
Σcoskπ/n=1
さらに,
sinα+sin3α+sin5α+・・・+sin(2n−1)α=sin^2nα/sinα
cosα+cos3α+cos5α+・・・+cos(2n−1)α=sin2nα/2sinα
α=π/(2n+1)とおくと,
Σcos(2k−1)π/(2n+1)=1/2
===================================
すなわち,
cosπ/7+cos3π/7+cos5π/7=1/2
のみならず
cosπ/3=1/2
cosπ/5+cos3π/5=1/2
cosπ/9+cos3π/9+cos5π/9+cos7π/9=1/2
cosπ/11+cos3π/11+cos5π/11+cos7π/11+cos9π/11=1/2
===================================