■正17角形の作図とガウスの公式(その12)

cos(2π/17)+cos(8π/17)=(A+B)/8

A=−1+√17

B=(34−2√17)^1/2

===================================

[Q]sinπ/5を求めよ

[A]θ=π/5,5θ=πより,

  cos(2θ+3θ)=−1

  cos(3θ)=cos(π−2θ)=−cos(2θ)

  4cos^3θ−3cosθ=2cos^2θ−1

  4x3−2x^2−3x+1=0

  (x−1)(4x^2+2x−1)=0

  x=1,(1±√5)/4のなかで,題意に合うものは

  cosθ=(1+√5)/4

  sinθ=(10−2√5)^1/2/4

===================================

[雑感]cosπ/5には2重根号は入らないが,sinπ/5を求めると,2重根号が出てくる.

===================================