■正17角形の作図とガウスの公式(その12)
cos(2π/17)+cos(8π/17)=(A+B)/8
A=−1+√17
B=(34−2√17)^1/2
===================================
[Q]sinπ/5を求めよ
[A]θ=π/5,5θ=πより,
cos(2θ+3θ)=−1
cos(3θ)=cos(π−2θ)=−cos(2θ)
4cos^3θ−3cosθ=2cos^2θ−1
4x3−2x^2−3x+1=0
(x−1)(4x^2+2x−1)=0
x=1,(1±√5)/4のなかで,題意に合うものは
cosθ=(1+√5)/4
sinθ=(10−2√5)^1/2/4
===================================
[雑感]cosπ/5には2重根号は入らないが,sinπ/5を求めると,2重根号が出てくる.
===================================