■たくさんのシャボン玉がくっつくと(その7)

 まずはおさらいから.3v=pf,2e=pfをオイラーの多面体定理に代入すると

  pf/3−pf/2+f=2

  f=12/(6−p)

ですから,

  v=pf/3=4p/(6−p)

  e=pf/2=6p/(6−p)

  p=6(f−2)/f

  f=(23+√313)/3=13.564

を代入すると

  p=6(f−2)/f=(26+2√313)/12=5.1153

  v=2(17+√313)/3=23.128

  e=17+√313=34.692

  f=13.564,v=23.128,e=34.692

すなわち,泡の平均の姿は23.128個の頂点,34.692本の辺,13.564枚の面からなる面が5.1153角形の立体となることがわかります.平均的な泡細胞は14面体に近いものになるというわけです.

  f=12/(6−p)

ですから,pの近似値を

  sin(π/p)=√(1/3)

  cos(π/p)=√(2/3)

  tan(π/p)=√(1/2)

あるいは

  p=2π/arccos(−1/3)

から,2次方程式の解として求められば

  f=(23+√313)/3=13.56

を得ることができます.しかし,(その2)ではそのようなうまい方法が思いつきませんでした.

===================================