■ミンコフスキー和(その13)

【1】4平方和定理4平方和定理(オイラー・ラグランジュの定理)

 任意の自然数は4つの平方数の和の形に表せる。

===================================

 4平方和定理,すなわち,任意の自然数はx^2+y^2+z^2+w^2の形に書くことができることをミンコフスキーの定理を用いて証明したい.

 x^2+y^2+z^2+w^2がpの倍数となるすべての点は格子をなすが,その平行八胞体の体積はpである.

 原点を中心とする半径1.01√pの球を描くと,その体積は

  π^2r^4/2=0.52π^2p^2=5.13p^2>4p

 ミンコフスキーの定理より,この球は原点以外の格子点(x,y)を少なくともひとつ含む.

  0<x^2+y^2+z^2+w^2<1.02p

 すなわち,0と1.02pの間にある0以外のpの倍数はp自体であることより,x^2+y^2+z^2+w^2=pが従う.

===================================