■ミンコフスキー和(その7)
【1】ゾーン多面体
平行多角形のみで構成される多面体をゾーン多面体といいます.ここでは,合同な菱形だけでできている菱形多面体を考えます.
菱形のすべての稜は2方向,菱形六面体のすべての稜は3方向,菱形十二面体では4方向,菱形三十面体では6方向を向いているのですが,菱形二十面体では5方向,菱形十二面体(第2種)では4方向を向いています.一般にすべての稜がn方向を向くとき,面数はf=n(n−1)となります.
n方向ベクトル星で決まるゾーン多角形はn(n−1)/2個の平行四辺形に分刈るされるのですが,これは投影されるゾーン多面体の手前の面となっていて,裏側に隠れた部分を加えると面数はf=n(n−1)となるというわけです.
ゾーン多面体は無数にあるのですが,そのうち,ゾーン面は2枚ずつ増やせるので2(n−1)面,天井面と床面はそれぞれ(n−1)(n−2)/2面で
2(n−1)+2(n−1)(n−2)/2=n(n−1)
という構成になっています.
f=n(n−1)=2,6,12,20,30,42,56,・・・
e=2n(n−1)
v=n(n−1)+2
n ゾーン 天井床 f e v
3 4 2 6 12 8
4 6 6 12 24 14
5 8 12 20 40 22
6 10 20 30 60 32
===================================
【2】黄金菱形多面体
黄金菱形平行6面体には2種類(太った菱面体とやせた菱面体)あって,細めで尖ったほうがacute(扁長菱面体),太めで平たいほうがobtuse(扁平菱面体)と呼ばれていますが,2つずつacute とobtuse が集まれば菱形十二面体(第2種),5つずつ集まれば菱形二十面体,10個ずつ集まれば菱形三十面体となります.このうち,菱形二十面体と菱形三十面体は5重の対称軸をもっています.
これらはコクセターにより,A6(acute),O6(obtuse),B12(Bilinsky),F20(Fedrov),K30(Kepler)と名づけられていて,それぞれ3次元から6次元までの立方体の投影の外殻になっています.すなわち,黄金平行多面体は5種類あり,黄金菱形をある方向に平行移動させたものがA6,O6であり,それをさらに平行移動させるとB12が,続いてF20が,最後にK30が生まれます.
したがって,A6とO6は3次元の,B12は4次元の,F20は5次元の,K30は6次元の立方体とそれぞれ同等になります.また,B12の中には2つずつのA6とO6が,F20の中にはひとつのB12と3つずつのA6とO6が(いいかえればF20の中には5つずつのA6とO6が),K30の中にはひとつのF20と5つずつのA6とO6が(いいかえればK30の中には10個ずつのA6とO6が)それぞれ入っていることになります.
菱形三十面体からあるゾーン(菱形の連なった帯)を抜き取って押しつぶすと菱形二十面体,菱形二十面体からあるゾーンを抜くと菱形十二面体(第2種)になるので,これらは各面の対角線の長さの比が黄金比の菱形からなる一連の多面体と考えることができます.
===================================
【3】ミンコフスキー和
ミンコフスキー和の計算結果についてまとめておきたい.辺の長さを1に規格化した体積を掲げる.
菱形30面体: 4τ{(5+√5)/2}^1/2
菱形20面体: 2τ{(5+√5)/2}^1/2
菱形12面体(第2種): 4τ/5{(5+√5)/2}^1/2
扁長菱形6面体: 2/5{(5+√5)/2}^1/2
扁平菱形6面体: 2/(5τ)・{(5+√5)/2}^1/2
以下,前節の言明「黄金菱形平行6面体には2種類(太った菱面体とやせた菱面体)あって,細めで尖ったほうがacute(扁長菱面体),太めで平たいほうがobtuse(扁平菱面体)と呼ばれていますが,2つずつacute とobtuse が集まれば菱形十二面体(第2種),5つずつ集まれば菱形二十面体,10個ずつ集まれば菱形三十面体となります.」について,体積計算して正しいことを確認しておきたい.
{(5+√5)/2}^1/2を省略して書くと,
A6+O6=2/5(1+1/τ)=2τ/5
2(A6+O6)=4τ/5=B12
5(A6+O6)=2τ=F20
10(A6+O6)=4τ=K30
===================================