■電卓と2乗保型数(その73)
(90625)^2=8212890625
は下5桁が90625もなる保型数である.
1787109736,8212890625
は下10桁保型数である.
ところで,最後の桁が1,5,6である数の平方には,最後の数桁がぞろ目になるものはなかった.0は下2桁が00になるから,下3桁以上がぞろ目になるものを探してみたい.
===================================
(02)^2=04 (07)^2=49
(12)^2=144(下2桁) (17)^2=289
(22)^2=484 (27)^2=729
(32)^2=1024 (37)^2=1369
(42)^2=1764 (47)^2=2209
(52)^2=2704 (57)^2=3249
(62)^2=3844(下2桁) (67)^2=4489
(72)^2=5184 (77)^2=5929
(82)^2=6724 (87)^2=7569
(92)^2=8464 (97)^2=9409
(03)^2=09 (08)^2=64
(13)^2=169 (18)^2=324
(23)^2=529 (28)^2=784
(33)^2=1089 (38)^2=1444(下3桁)
(43)^2=1849 (48)^2=2304
(53)^2=2809 (58)^2=3364
(63)^2=3969 (68)^2=4624
(73)^2=5329 (78)^2=6084
(83)^2=6889 (88)^2=7744(下2桁)
(93)^2=8649 (98)^2=9604
(04)^2=16 (09)^2=81
(14)^2=196 (19)^2=361
(24)^2=576 (29)^2=841
(34)^2=1156 (39)^2=1521
(44)^2=1936 (49)^2=2401
(54)^2=2916 (59)^2=3481
(64)^2=4096 (69)^2=4761
(74)^2=5476 (79)^2=6241
(84)^2=7056 (89)^2=7921
(94)^2=8836 (99)^2=9801
===================================
(100n+38)^2の下3桁は444になる.
(100n−38)^2の下2桁は44になる.
(100n+88)^2の下2桁は44になる.
(100n−88)^2の下2桁は44になる.
(500n+38)^2の下3桁は444になる.
(500n−38)^2の下3桁は444になる.
平方数の末尾が444になる最も小さい数は
38^2=1444
2番目は
462^2=213444
===================================