■電卓と2乗保型数(その73)

  (90625)^2=8212890625

は下5桁が90625もなる保型数である.

  1787109736,8212890625

は下10桁保型数である.

 ところで,最後の桁が1,5,6である数の平方には,最後の数桁がぞろ目になるものはなかった.0は下2桁が00になるから,下3桁以上がぞろ目になるものを探してみたい.

===================================

  (02)^2=04   (07)^2=49

  (12)^2=144(下2桁)   (17)^2=289

  (22)^2=484   (27)^2=729

  (32)^2=1024   (37)^2=1369

  (42)^2=1764   (47)^2=2209

  (52)^2=2704   (57)^2=3249

  (62)^2=3844(下2桁)   (67)^2=4489

  (72)^2=5184   (77)^2=5929

  (82)^2=6724   (87)^2=7569

  (92)^2=8464   (97)^2=9409

  (03)^2=09   (08)^2=64

  (13)^2=169   (18)^2=324

  (23)^2=529   (28)^2=784

  (33)^2=1089   (38)^2=1444(下3桁)

  (43)^2=1849   (48)^2=2304

  (53)^2=2809   (58)^2=3364

  (63)^2=3969   (68)^2=4624

  (73)^2=5329   (78)^2=6084

  (83)^2=6889   (88)^2=7744(下2桁)

  (93)^2=8649   (98)^2=9604

  (04)^2=16   (09)^2=81

  (14)^2=196   (19)^2=361

  (24)^2=576   (29)^2=841

  (34)^2=1156   (39)^2=1521

  (44)^2=1936   (49)^2=2401

  (54)^2=2916   (59)^2=3481

  (64)^2=4096   (69)^2=4761

  (74)^2=5476   (79)^2=6241

  (84)^2=7056   (89)^2=7921

  (94)^2=8836   (99)^2=9801

===================================

 (100n+38)^2の下3桁は444になる.

 (100n−38)^2の下2桁は44になる.

 (100n+88)^2の下2桁は44になる.

 (100n−88)^2の下2桁は44になる.

 (500n+38)^2の下3桁は444になる.

 (500n−38)^2の下3桁は444になる.

 平方数の末尾が444になる最も小さい数は

  38^2=1444

2番目は

  462^2=213444

===================================