■ディオファントス近似・超ディオファントス近似(その1)
「ディリクレの定理」すなわち,近似分数列{an/bn}で非常によく近似できる実数αについて
|α−an/bn|<1/bn^2
が成立するならばαは無理数である(右辺はこの定数倍でもよい).これは無理数が無限に多くの既約分数解{an/bn}をもつことを示している.
それでは
|α−an/bn|<1/bn^k
が無限に多くの解をもつことができるような最大の実数kはいくつになるのだろうか? kを求める問題は1種の最良近似問題である
===================================
【1】ディリクレの定理の証明
αが有理数で,α=p/qと表されたとする.{bn}は次々に大きくなる整数列であるから,q<bnである番号をとると
|α−an/bn|=|p/q−an/bn|=|pbn−qan|/qbn
しかし,an/bnはαとは一致しないので分子は1以上.したがって
|α−an/bn|≧1/qbn
であるが,これが<1/bn^2なのでq>bnとなり矛盾.すなわち,αは有理数ではあり得ないことになる.
===================================