■ディオファントス・フェルマー・ワイルズ(その63)
x^2+y^2=z^2
に対して
x^3+y^3=z^3
x^4+y^4=z^4
には,等式を満たすような整数の組み合わせがないことをオイラーが証明.しかし,さすがのオイラーも5より大きいベキについては匙を投げた.
[1]x^5+y^5=z^5 (ディリクレ,1829年)
[2]x^7+y^7=z^7 (ラメ,1839年)
[3]x^n+y^n=z^n,n<100 (クンマー,1857年)
には,等式を満たすような整数の組み合わせがないことが証明される.
[4]1980年代に入って,フライが,もし,a^n+b^n=c^nを満たす解があるとすると,楕円曲線
y^2=x(x−a^n)(x+b^n)
が得られる.しかし,これは極めて異様なことと考えられた.例えば,多項式
(x−a^n)(x+b^n)=x^2-x(a^n-b^n)-a^nb^n
の根の存在を決定する判別式
Δ=(a^n-b^n)^2+4a^nb^n
Δ^1/2=a^n+b^n=c^n
は完全なn乗式である.彼の楕円曲線は話がうますぎて,信じられない性質をもっていることに気づいたのである.
[5]リベットはフライの状況証拠説を証明,フライ曲線がモジュラー関数によってパラメライズされえない,すなわち,谷山・志村予想が正しければフェルマー予想も正しいことを意味する.いまやこの問題は谷山・志村予想を証明するだけという状況になった.
[6]そして,ワイルズが谷山・志村予想を証明,したがって,フェルマー予想も正しい.
===================================