■ディオファントス・フェルマー・ワイルズ(その18)

[Q]所与の自然数nについて,

[1]1/(a−b)(a−c)+1/(b−a)(b−c)+1/(c−a)(c−b)=n

[2]a/(a−b)(a−c)+b/(b−a)(b−c)+c/(c−a)(c−b)=n

[3]a^2/(a−b)(a−c)+b^2/(b−a)(b−c)+c^2/(c−a)(c−b)=n

[4]a^3/(a−b)(a−c)+b^3/(b−a)(b−c)+c^3/(c−a)(c−b)=n

の自然数解(a,b,c)を求めよ.

===================================

[A]

[1]1/(a−b)(a−c)+1/(b−a)(b−c)+1/(c−a)(c−b)=0

[2]a/(a−b)(a−c)+b/(b−a)(b−c)+c/(c−a)(c−b)=0

[3]a^2/(a−b)(a−c)+b^2/(b−a)(b−c)+c^2/(c−a)(c−b)=1

[4]a^3/(a−b)(a−c)+b^3/(b−a)(b−c)+c^3/(c−a)(c−b)=a+b+c

より,[1][2]はn=0,[3]はn=1,[4]はn=a+b+cのとき,無限に整数解をもちます.

===================================