■オイラー積と素数定理(その50)
[参]黒川信重「オイラーとリーマンのゼータ関数」日本評論社
[0]∫(0,1)logx/(x−1)dx=ζ(2)=π^2/6
[1]∫(0,1)(x−1)/logxdx=log2
[0]∫(0,1)(logx)^2/(x−1)^2dx=2ζ(2)=π^2/3
[1]∫(0,1)(x−1)^2/(logx)^2dx=log(27/16)
===================================
Ir=∫(0,1)(logx/(x−1))^rdx
Jr=∫(0,1)((x−1)/logx)^rdx
とおくと,[7]より・・・
I1=ζ(2)=π^2/6
I2=2ζ(2)=π^2/3
I3=3ζ(3)+3ζ(2)
I4=8ζ(4)+12ζ(3)+4ζ(2)
J1=log2
J2=log(27/16)
J3=1/2・log(2^44/3^27)
J4=1/6・log(3^165^125/2^544)
===================================