■オイラー積と素数定理(その38)

[0]∫(0,1)logx/(x−1)dx=ζ(2)=π^2/6

[1]∫(0,1)(x−1)/logxdx=log2

[2]∫(0,1)(x^m−x^n)/logxdx=log((m+1)/(n+1))

[3]f(x)=Σa(k)x^k,f(1)=0とする.このとき

   ∫(0,1)f(x)/logxdx=Σa(k)log(k+1)

[4]∫(0,1)(x−1)^n/logxdx=Σ(−1)^(n-k)(n,k)log(k+1)

[5]オイラーの定数:γ=∫(0,1){1/(1−x)+1/logx}dx=Σ(−1)^nζ(n)

[6]調和数;Hn=1+1/2+・・・+1/n=∫(0,1))(1−x^n)/(1−x)dx

[7]∫(0,1))x^a-1(1−x^b)(1−x^c)/(1−x^n)logxdx=log{Γ((a+b)/n)Γ((a+c)/n)/Γ(a/n)Γ((a+b+c)/n)}

[8]∫(0,1))sin(αlogx)/logxdx=arctanα

α=1のとき,∫(0,1))sin(logx)/logxdx=π/4

[8]∫(0,1))sin(αlogx)x^(a-1)/logxdx=arctan(α/a)

α=1のとき,∫(0,1))sin(logx)/logxdx=π/4

===================================