■フェルマーが考察した3つの問題(その5)

[1]3辺の長さがすべて整数、かつ面積が平方数の直角三角形は存在するか?

[2]y^2=x^3-xの(0,0),(±1,0)以外の有理数解をもつか?

[3]方程式x^4+y^4=z^4は自明でない整数解をもつか?

===================================

【補】楕円曲線とフェルマーの定理

 ワイエルシュトラス形式の特異点は有理点であり,曲線上に特異点があれば,適当なパラメータmによりx,yはmの多項式として表されます.そして,xとyがmの有理式として表されるとき,有理曲線となり,2次曲線とよく似た性質をもちます.

 一方,特異点がなければ,楕円曲線と呼ばれる非有理曲線で2次曲線とは本質的に異なってきます.2次曲線はすべて有理曲線ですが,3次曲線が異なる3根をもつ有理係数の多項式の場合は,有理勾配の方法によるパラメトライズは有効には働きません.すなわち,楕円曲線は有理曲線でないため有理関数で表わすことはできませんが,楕円関数でパラメトライズすることは可能です.

 ところで,フェルマーの最終定理

『x^n+y^n=z^nでn≧3のとき,x,y,zは正の整数解をもたない.』

を解くことは,2変数n次多項式f(x,y)=x^n+y^n−1=0に,有理数解があるか,すなわち有理点をもつかどうかを考える問題に対応します.

 1970年代,フェルマーの問題を征するために必要となるのが楕円曲線であることが明らかになりました.楕円曲線には,楕円曲線と三点で交わる直線で,そのうちの二つの交点の座標がわかれば他の一点の座標も計算でき,二つの点の座標が有理数ならば,他の一点の座標も有理数であるなどの性質をもっています.

 a^p+b^p=c^pを満たすような楕円曲線:

  y^2=x(x+a^p)(x−b^p) が保型関数によってパラメトライズできないことの証明がフェルマーの最終定理の証明に繋がるのですが,これ以上はかなりこみいった話になるので追求しないでおきましょう.(楕円曲線の有理点の有無ではなく,楕円曲線そのものが存在しないことを示すのである.)

===================================