■n次元平行2n面体とn+1面体の体積(その2)
2つのベクトルa↑,b↑を基底とする平行体(平行四辺形)の面積は,外積は
a↑×b↑
3つのベクトルa↑,b↑,c↑を基底とする平行体(平行六面体)の体積は,スカラー三重積
(a↑×b↑)・c↑
すなわち,外積a↑×b↑とベクトルc↑の内積で与えられます.
|a↑|=a,|b↑|=bとすれば,平行四辺形の面積は,
S=absinθ
ですから,
S^2=a^2b^2(1−cos^2θ)
=|a↑|^2|b↑|^2−(a↑・b↑)^2
=|a↑・a↑ a↑・b↑|
|b↑・a↑ b↑・b↑|
同様に,平行六面体の体積は
V^2=|a↑・a↑ a↑・b↑ a↑・c↑|
|b↑・a↑ b↑・b↑ b↑・c↑|
|c↑・a↑ c↑・b↑ c↑・c↑|
で与えられます.
これらのように,内積の行列式で定義される行列式をグラムの行列式(グラミアン)といいます.平行体の面積・体積はグラミアンの平方根に等しくなるというわけです.
また,座標を使って表せば,n+1個の点の座標に(1,1,1,・・・,1)を加えて作られる(n+1)次の行列式の絶対値になります.
|S|=|1 x1 y1| |V|=|1 x1 y1 z1|
|1 x2 y2| |1 x2 y2 z2|
|1 x3 y3| |1 x3 y3 z3|
|1 x4 y4 z4|
原点が含まれるときは,
|S|=|x1 y1| |V|=|x1 y1 z1|
|x2 y2| |x2 y2 z2|
|x3 y3 z3|
のように展開されます.
なお,これらはそれぞれn次元単体の体積のn!倍になりますから,三角形面積,四面体の体積は,
S’=S/2
V’=V/6
また,4辺の長さがa,b,cで与えられた三角形,6辺の長さがa,b,c,d,e,fで与えられた四面体の場合は,
2^2(2!)^2S’^2=|0 a^2 b^2 1|
|a^2 0 c^2 1|
|b^2 c^2 0 1|
|1 1 1 0|
2^3(3!)^2V’^2=|0 a^2 b^2 c^2 1|
|a^2 0 d^2 e^2 1|
|b^2 d^2 0 f^2 1|
|c^2 e^2 f^2 0 1|
|1 1 1 1 0|
となります.
前者はヘロンの公式にほかなりませんが,ヘロンの公式とは,任意の三角形の三辺の長さをa,b,c,面積をΔとして,
Δ^2=(2a^2b^2+2b^2c^2+2c^2a^2−a^4−b^4−c^4)/16
=(a+b+c)(−a+b+c)(a−b+c)(a+b−c)/16
ここで,2s=a+b+cとおくと
Δ^2=s(s−a)(s−b)(s−c)
となり,おなじみの平面三角形のヘロンの公式が得られます.
===================================
[補]正5胞体と五角形
4次元空間の単体(5胞体)の体積は係数1/24を除いて行列式
24|V|=|1 1 1 1 1 |
|x11 x21 x31 x41 x51|
|x12 x22 x32 x42 x52|
|x13 x23 x33 x43 x53|
|x14 x24 x34 x44 x54|
で表されます.
ここで,右辺の第i列から第i+1列を引く操作をxi=1,2,3,4の順に繰り返すと
24|V|=|x11−x21 x21−x31 x31−x41 x41−x51|
|x12−x22 x22−x32 x32−x42 x42−x52|
|x13−x23 x23−x33 x33−x43 x43−x53|
|x14−x24 x24−x34 x34−x44 x44−x54|
この転置行列を右からかけると
24^2V^2=|Σ(xik−xi+1k)(xjk−xj+1k)|
=|ai↑・aj↑|
すなわち,グラミアンで与えられます.
さらにここで正5胞体(各辺の長さを1,各内角をθ)とすると,
ai↑・ai↑=1,ai↑・ai+1↑=cos(π−θ)=−cosθ
後者をxとおくと,x+y=−1/2なるx,yについて
24^2V^2=|1 x y y|
|x 1 x y|
|y x 1 x|
|y y x 1|
となります.
この行列式はx,yについて対称式であり,
x^4−2x^3y−x^2y^2+y^4+4x^2y+4xy^2−3x^2−3y^2+1
と展開されます.これが
(x^2−3xy+y^2+x+y−1)(x^2+xy+y^2−x−y−1)
さらに,黄金比:τ=(√5+1)/2,τ^(-1)=(√5−1)/2を用いると
(τx−τ^(-1)y−1)(τ^(-1)x−τ^(-1)y+1)(x^2+xy+y^2−x−y−1)
と因数分解できます.これは計算機による数式処理の初歩の演習問題といえるでしょう.
この正5胞体が3次元に退化する条件は
V=0,x+y=−1/2
を解くことにより,
x=(√5−1)/4,−(√5+1)/4
すなわち,
θ=108°(正五角形)または36°(星形五角形)
となり,3次元を通り越して一挙に2次元まで退化してしまいます.
すなわち,正5胞体は平面の正五角形と星形五角形の中間の4次元図形と解釈できるというわけです.
===================================