■ピタゴラスの定理・円周角の定理(その3)

 各辺(a,b,c)と空間対角線dの直方体では

  a^2+b^2+c^2=d^2

が成り立つが,ファウルハーバーは直角三角形の辺の長さの2乗を,直角三角錐の面の面積の2乗に拡張した.

===================================

【1】ファウルハーバーの定理

 辺(p,q,r)が1点において直交する四面体において,3つの面の面積をa,b,c,斜面の面積をdとすると

  a^2+b^2+c^2=d^2

===================================

【2】ファウルハーバーの定理の任意の次元nへの一般化

 n+1個のファセットをもつn次元直角錐体において,n個のファセットのn−1次元体積の2乗和は,斜ファセットの体積の2乗に等しい.

===================================