■モーデル方程式(その21)
[4]y^2=x^3−11を満たす整数解は(x,y)=(3,±4),(15,±58)だけである
===================================
x^2+11=(x+i√11)(x−i√11)
(x+i√11)=(a+bi√11)^3
=a^3+3a^2bi√11−33ab^2−11b^3i√11
=(a^3−33ab^2)+(3a^2b−11b^3)i√11
=a(a^2−33b^2)+b(3a^2−11b^2)i√11
(x+i√11)→a(a^2−33b^2)=x,b(3a^2−11b^2)=1
b=±1とすると,(3a^2−11)=±1→b=1のときa=±2
(2,1)→a(a^2−33b^2)=−58=x (NG)
(−2,1)→a(a^2−11b^2)=58=x (OK)
さらにy=15.
===================================