■モーデル方程式(その21)

[4]y^2=x^3−11を満たす整数解は(x,y)=(3,±4),(15,±58)だけである

===================================

x^2+11=(x+i√11)(x−i√11)

(x+i√11)=(a+bi√11)^3

=a^3+3a^2bi√11−33ab^2−11b^3i√11

=(a^3−33ab^2)+(3a^2b−11b^3)i√11

=a(a^2−33b^2)+b(3a^2−11b^2)i√11

(x+i√11)→a(a^2−33b^2)=x,b(3a^2−11b^2)=1

b=±1とすると,(3a^2−11)=±1→b=1のときa=±2

(2,1)→a(a^2−33b^2)=−58=x   (NG)

(−2,1)→a(a^2−11b^2)=58=x  (OK)

さらにy=15.

===================================