■量子化とラマヌジャンの和(その26)
integral(0,∞)x^n/[e^x-1]=Γ(n+1)ζ(n+1)
ζ(z)=Σ1/n^z
φ(z)=Σ(-1)^(n-1)/n^z
ξ(z)=Σ1/(2n-1)^z
ψ(z)=Σ(-1)^(n-1)/(2n-1)^z
と定義します。
===================================
xcotx=1-2Σζ(2m)x^2m/π^2m
xcotx=Σ(0,∞)(-1)^mB2m・(2x)^2m/(2m)!ですから
ζ(2m)=1/2・(2π)^2m/(2m)!・(-1)^m-1B2m
ζ(2)=π^2/6,ζ(4)=π^4/90,ζ(6)=π^6/645,ζ(8)=π^8/9450,ζ(10)=π^10/93555
===================================
φ(z)=(1-2^(1-z))ζ(z)
φ(1)=log2
x/sinx=1+2Σφ(2m)x^2m/π^2m
x/sinx=1+2Σ(0,∞)(1-2^2m-1)(-1)^mB2m(x)^2m/(2m)!ですから
φ(2m)=(1-2^(1-2m)(2π)^2m/2(2m)!・(-1)^m-1B2m
φ(0)=1/2,ζ(0)=-1/2
===================================
ξ(z)=(1-2^(-z))ζ(z)
xtanx=2Σξ(2m)(2x)^2m/π^2m
xtanx=Σ(0,∞)(1-2^2m)(-1)^mB2m(2x)^2m/(2m)!ですから
ξ(2m)=(1-2^(-2m))(2π)^2m/2(2m)!・(-1)^m-1B2m
ξ(0)=0
===================================
ψ(1)=Σ(-1)^(n)/(2n+1)=arctan(1)=π/4
1/cosx=2Σψ(2m+1)(2/π)^(2m+1)・x^2m
===================================
1+1/3^2+1/5^2+1/7^2+・・・
の値はζ(2)=Σ1/n^2から次のようにして求まります.
1+1/2^2+1/3^2+1/4^2+・・・
=(1+1/2^2+1/4^2+・・・)(1+1/3^2+1/5^2+・・・)
=1/(1−1/4)・(1+1/3^2+1/5^2+・・・)
1+1/3^3+1/5^3+1/7^3+・・・
の値はζ(3)=Σ1/n^3 から次のようにして求まります.
1+1/2^3+1/3^3+1/4^3+・・・
=(1+1/2^3+1/4^3+・・・)(1+1/3^3+1/5^3+・・・)
=1/(1−1/8)・(1+1/3^3+1/5^3+・・・)
より,分母を奇数のベキ乗だけにすると一般式は
{1-2^(ーs)}ζ(s)
さらに,
1/1^s−1/2^s+1/3^s−1/4^s+・・・
=2(1/1^s+1/3^s+1/5^s+1/7^s+・・・)−(1/1^s+1/2^s+1/3^s+1/4^s+・・・)
より,+,−が交互に出現すると一般式
{1-2^(1ーs)}ζ(s)
を得ることができます.
===================================