¡—ÊŽq‰»‚ƃ‰ƒ}ƒkƒWƒƒƒ“‚̘ai‚»‚Ì‚Q‚Sj

y‚Pzƒxƒ‹ƒk[ƒC”‚Ì’è‹`

x/(exp(x)-1)=ƒ°(0,‡)BnEx^n/n!

1=(exp(x)-1)/xEƒ°(0,‡)BnEx^n/n!

1=ƒ°(0,‡)x^m/(m+1)!Eƒ°(0,‡)BnEx^n/n!

1=ƒ°(0,‡)ƒ°(0,‡)BnEx^(m+n)/(m+1)!n!

k=m+n

ƒ°m(0,‡)ƒ°n(0,‡)=ƒ°k(0,‡)ƒ°n(0,k)

1=ƒ°k(0,‡){ƒ°n(0,k)Bn/(k+1-n)!n!}Ex^k

B01,ƒ°n(0,k)Bn/(k+1-n)!n!=0

B01,ƒ°(0,k)(k+1,n)Bn=0EEE‘Q‰»Ž®

(2,0)B0+(2,1)B1=0¨B1=-1/2

(3,0)B0+(3,1)B1+(3,2)B2=0¨B2=1/6

(4,0)B0+(4,1)B1+(4,2)B2+(4,3)B3=0¨B3=0

B1=-1/2,B2m+1=0

x/(exp(x)-1)=ƒ°(0,‡)BnEx^n/n!=-x/2+ƒ°(0,‡)B2mEx^2m/(2m)!

xcotx=ƒ°(0,‡)(-1)^mB2mE(2x)^2m/(2m)!

y‚QzƒIƒCƒ‰[”‚Ì’è‹`

1/cosx=ƒ°(0,‡)ƒÀ2mEx^2m/(2m)!

E2m=(-1)^mƒÀ2m

1=cosxEƒ°(0,‡)ƒÀ2mEx^2m/(2m)!

1=ƒ°(0,‡)(-1)^m/(2m)!Ex^2mEƒ°(0,‡)ƒÀ2kEx^2k/(2k)!

1=ƒ°(0,‡)ƒ°(0,‡)(-1)^mƒÀ2kEx^(2m+2k)/(2m)!(2k)!

n=m+k

1=ƒ°n(0,‡){ƒ°k(0,n)(-1)^(n-k)ƒÀ2k/(2n-2k)!(2k)!}Ex^2n

ƒÀ01,ƒ°k(0,n)(-)^(n-k)(2n,2k)ƒÀ2k=0EEE‘Q‰»Ž®

ƒÀ1=1,ƒÀ4=5,ƒÀ6=61,EEE