¡—ÊŽq‰»‚ƃ‰ƒ}ƒkƒWƒƒƒ“‚̘ai‚»‚Ì‚Q‚Qj

y‚Pzƒxƒ‹ƒk[ƒC”‚Ì’è‹`

x/(exp(x)-1)=ƒ°(0,‡)BnEx^n/n!

1=(exp(x)-1)/xEƒ°(0,‡)BnEx^n/n!

1=ƒ°(0,‡)x^m/(m+1)!Eƒ°(0,‡)BnEx^n/n!

1=ƒ°(0,‡)ƒ°(0,‡)BnEx^(m+n)/(m+1)!n!

k=m+n

ƒ°m(0,‡)ƒ°n(0,‡)=ƒ°k(0,‡)ƒ°n(0,k)

1=ƒ°k(0,‡){ƒ°n(0,k)Bn/(k+1-n)!n!}Ex^k

B01,ƒ°n(0,k)Bn/(k+1-n)!n!=0

B01,ƒ°(0,k)(k+1,n)Bn=0EEE‘Q‰»Ž®

(2,0)B0+(2,1)B1=0¨B1=-1/2

(3,0)B0+(3,1)B1+(3,2)B2=0¨B2=1/6

(4,0)B0+(4,1)B1+(4,2)B2+(4,3)B3=0¨B3=0

B1=-1/2,B2m+1=0

x/(exp(x)-1)=ƒ°(0,‡)BnEx^n/n!=-x/2+ƒ°(0,‡)B2mEx^2m/(2m)!

xcotx=ƒ°(0,‡)(-1)^mB2mE(2x)^2m/(2m)!

ƒ°(0,n)(n+1,k)Bk=0

ƒ°(0,m)(2m+1,2k)2^2kEB2k=2m+1

xtanx=ƒ°(0,‡)(1-2^2m)(-1)^mB2m(2x)^2m/(2m)!

ƒ°(1,m)(2m,2k)2^2k(1-2^2k)EB2k=-2m

x/sinx=1+2ƒ°(0,‡)(1-2^2m-1)(-1)^mB2m(x)^2m/(2m)!

x/(exp(x)+1)=x/2+ƒ°(1,‡)(1-2^2m)B2mEx^2m/(2m)!