■一定の幅をもつ立体(その35)

アルキメデスは

「球の体積はそれを囲む円柱の2/3に等しい」

「球の表面積はそれを囲む円柱の2/3に等しい」

ことを証明した。

交差円柱とは垂直に交差した2本の円柱の共通部分である。

それは円を内接させ、立方体を概説させることができるが、

驚くべきことに、アルキメデスは

「交差円柱の体積はそれを囲む立方体の2/3に等しい」

ことも示している。

===================================