■正多面体の正多角形投影(その1)
正四面体の4頂点
(1,0,0,0)
(0,1,0,0)
(0,0,1,0)
(0,0,0,1)
が,xy平面上の4点
(cos0π/4,sin0π/4)
(cos2π/4,sin2π/4)
(cos4π/4,sin4π/4)
(cos6π/4,sin6π/4)
に投影されるためには,2×4行列
M=[cos0π/4,cos2π/4,cos4π/4,cos6π/4]
[sin0π/4,sin2π/4,sin4π/4,sin6π/4]
が必要になる.
===================================
(1/2,1/2,0,0)は
x=1/2
y=1/2
に投影される
(x^2+y^2)=1/2
頂点までの√2/2が正しいようである。
===================================
一方、辺の中点(1/2,1/2,0,0)は
x=1/2
y=1/2
に投影される
(x^2+y^2)=1/2
辺の中点そのものに投影される。
===================================
n+1点
(1,0,0,0,0,0,0)
(0,1,0,0,0,0,0)
・・・・・・・・・・・・・・・・
(0,0,0,0,0,0,1)
が,xy平面上のn+1点
(cos0π/n+1,sin0π/7)
(cos2π/n+1,sin2π/7)
・・・・・・・・・・・・・・・・
(cos2(n-1)π/n+1,sin2(n-1)π/7)
に投影されるためには,2×7行列
M=[cos0π/n+1,cos2π/n+1,・・・,cos2(n-1)π/n+1]
[sin0π/n+1,sin2π/n+1,・・・,sin2(n-1)π/n+1]
が必要になる.
===================================