■正多面体の正多角形投影(その1)

 

 正四面体の4頂点

  (1,0,0,0)

  (0,1,0,0)

  (0,0,1,0)

  (0,0,0,1)

が,xy平面上の4点

  (cos0π/4,sin0π/4)

  (cos2π/4,sin2π/4)

  (cos4π/4,sin4π/4)

  (cos6π/4,sin6π/4)

に投影されるためには,2×4行列

M=[cos0π/4,cos2π/4,cos4π/4,cos6π/4]

  [sin0π/4,sin2π/4,sin4π/4,sin6π/4]

が必要になる.

===================================

(1/2,1/2,0,0)は

x=1/2

y=1/2

に投影される

(x^2+y^2)=1/2

頂点までの√2/2が正しいようである。

===================================

一方、辺の中点(1/2,1/2,0,0)は

x=1/2

y=1/2

に投影される

(x^2+y^2)=1/2

辺の中点そのものに投影される。

===================================

 n+1点

  (1,0,0,0,0,0,0)

  (0,1,0,0,0,0,0)

 ・・・・・・・・・・・・・・・・

  (0,0,0,0,0,0,1)

が,xy平面上のn+1点

  (cos0π/n+1,sin0π/7)

  (cos2π/n+1,sin2π/7)

 ・・・・・・・・・・・・・・・・

  (cos2(n-1)π/n+1,sin2(n-1)π/7)

に投影されるためには,2×7行列

M=[cos0π/n+1,cos2π/n+1,・・・,cos2(n-1)π/n+1]

  [sin0π/n+1,sin2π/n+1,・・・,sin2(n-1)π/n+1]

が必要になる.

===================================