an^2-2bn^2=1
が成り立つ最小解は(a,b)=(3,2)である.
===================================
【1】√2に収束する数列
まず
(1+√2)^n=an+bn√2
(1-√2)^n=an-bn√2
を満足させるような整数列{an},{bn}を考えます.これらの数列は
an^2-2bn^2=(-1)^n
となる関係式で結ばれていて,
an/bn→ √2
ですから,√2に最も近い分数を与えることがわかります(最良近似).
an+1+bn+1√2=(1+√2)^n(an+bn√2)
=(an+2bn)+(an+bn)√2
より
an+1=an+2bn,bn+1=an+bn
an+1=an+2bn=an+2(an-1+bn-1)
=an+an-1+(an-1+2bn-1)=2an+an-1
bn+1=an+bn=(an-1+2bn-1)+bn
=(an-1+bn-1)+bn+bn-1)=2bn+bn-1
より
an+1=2an+an-1,bn+1=2bn+bn-1
α,βを2次方程式x^2-2x-1=0の根1±√2として,
an+1-αan=β(an-αan-1)=β^2(an-1-αan-2)=・・・=β^(n-1)(a2-αa1)
α,βを入れ替えると
an+1-βan=α^(n-1)(a2-βa1)
an+1-αan=β^(n-1)(a2-αa1)
したがって,整数列{an}の一般項は
an={α^(n-1)(a2-βa1)-β^(n-1)(a2-αa1)}/(α-β)
α=1+√2,β=1-√2,初期値をa1=1,a2=3とすると
an=1/2{(1+√2)^n+(1-√2)^n}
整数列{bn}でも同じ漸化式ですから,同じ一般項になります.
bn={α^(n-1)(b2-βb1)-β^(n-1)(b2-αb1)}/(α-β)
初期値をb1=1,b2=2とすると
bn=1/2√2{(1+√2)^n-(1-√2)^n}
ここで,n→∞のとき(1-√2)^n→0ですから
an/bn→ √2
となるのを確かめることができます.
===================================