■フェルマー素数と正十七角形(その8)

[Q]sin(2π/7)+sin(4π/7)+sin(8π/7)=?

===================================

[1]sin(2π/7)+sin(4π/7)+sin(8π/7)

=−sin(π/7)+sin(3π/7)+sin(5π/7)=S

 正弦の和公式において,α=π/(2n+1)とおくと,

  Σsin(2k−1)π/(2n+1)=sin^2nπ/(2n+1)/sinπ/(2n+1)

[2]sin(π/7)+sin(3π/7)+sin(5π/7)=sin^23π/7/sinπ/7=−4sin^2π/7+3

[3] [2]−[1]=2sin(π/7)=(−4sin^3π/7+3sinπ/7)^2/sinπ/7−S

[4]2sin^2(π/7)=(−4sin^3π/7+3sinπ/7)^2−S・sinπ/7

===================================