■基本対称式とニュートンの定理(その2)
r次の基本対称式(の総和)σrについては,不等式
σr-1σr+1≦σr^2 (1<=rが成り立つことが知られている.
また,
Π(1+tαi)=1+σ1t+σ2t^2+・・・+σnt^n
=1+nC1c1t+nC2c2t^2+・・・+σnt^n
と表すと,
cr=σn/nCr
すなわち,r次の基本対称式の平均である.
crは
σr-1σr+1≦σr^2 (1<=rよりも強い,次のような不等式を満たす.
(1):cr-1cr+1≦cr^2 (1<=r(2):c1≧c2^(1/2)≧c3^(1/3)≧・・・≧cn^(1/n)
なお,対称式の計算は,ヤング図形を用いて見通しよく行うことができる.ヤング図形は対称式の計算に役立つだけでなく,「群の表現論」と呼ばれる分野でも用いられ,テンソル積の計算など非常に便利なものになっている.群の表現論は現在も活発に研究され進歩している分野である.
===================================