■ライプニッツの調和三角形(その28)
sinx/x=(1−x^2/π^2)(1−x^2/4π^2)(1−x^2/9π^2)・・・
===================================
[1](1−1/4)(1−1/9)(1−1/16)・・・
sinx/x(1−x^2/π^2)=(1−x^2/4π^2)(1−x^2/9π^2)・・・
=−π^2/x(x+π)・(sinx−sinπ)/(x−π)
x→πのとき,(sinx−sinπ)/(x−π)→cosπ
(1−1/4)(1−1/9)(1−1/16)・・・=1/2
あるいは
(1−1/4)(1−1/9)(1−1/16)・・・(1−1/n^2)
=(1・3/2・2)・(2・4/3・3)・(3・5)/(4・4)・・・(n−1)(n+1)/n^2
=(n+1)/2n→1/2
[2](1−4/9)(1−4/16)(1−4/25)・・・
sinx/x(1−x^2/π^2)(1−x^2/4π^2)=(1−x^2/9π^2)・・・
=π^3/x(x+π)(x−π)(x+2π)・(sinx−sin2π)/(x−2π)
x→2πのとき,(sin2x−sin2π)/(x−π)→cos2π
(1−4/9)(1−4/16)(1−4/25)・・・=1/6
===================================