‘ƒtƒŠ[ƒY‚ΜŠτ‰½Šwi‚»‚Μ‚U‚Oj

³Žl–Κ‘Μ‚Ε‚ΝƒΏ=ƒΞ/3,ƒΐ=ƒΞ/3¨γ3sinƒΑ1

(tanƒΏ)^2=3

(tanƒΐ)^2=3

(tanƒΑ)^2=1/2

cosƒΒ= 1/3¨2/3,1/2

‚P@@@‚P@@@‚P@@@‚P@@@‚P

@@‚Q@@@‚Q@@@‚Q@@@3/4

@@@@‚R@@@‚R@@@1/2

@@@@@@‚S@@@1/4

@@@@@@@@‚O

(tanƒΏ)^2(tanƒΑ)^23/2

(secƒΏ)^2(secƒΑ)^2/(secƒΐ)^24E6/4/i4j3/2



s”2‚ΜƒtƒŠ[ƒY‚Μ•Ήi‹Ύ‰f‚Ν

‚P@@@‚P@@@‚P@@@‚P@@@‚P@@@‚P@@@‚P

@@‚@@@‚‚@@@‚ƒ@@@‚„@@@‚…@@@‚

@@@@‚„@@@‚…@@@‚@@@‚‚@@@‚ƒ

@@@@@@‚P@@@‚P@@@‚P@@@‚P

@@@@@@@@‚O@@@‚O@@@‚O



‚P@@@‚P@@@‚P@@@‚P@@@‚P@@@‚P

@@1/2@@@‚W@@@1/2@@@‚R@@@‚R

@@@@‚R@@@‚R@@@1/2@@@‚W

@@@@@@‚P@@@‚P@@@‚P@

@@@@@@@@‚O@@@‚O

(tanƒΏ)^2(tanƒΑ)^23/2

(secƒΏ)^2(secƒΑ)^2/(secƒΐ)^24E3/2/i4j3/2‚͐¬‚θ—§‚Β

(1,1,1EEE)‚ΰŒ»‚κ‚½.•Ήi‹Ύ‰f«‚ΰ¬‚θ—§‚B



‚P@@@‚P@@@‚P@@@‚P@@@‚P@@@‚P@@@‚P

@@1/2@@@‚W@@@1/2@@‚R@@@‚R@@ 1/2

@@@@‚R@@@‚R@@@1/2@@ ‚W@@@1/2@@ ‚R

@@@@@@‚P@@@‚P@@@‚P@@@‚P @@@‚P @@

@@@@@@@@‚O@@@‚O@@@‚O@@@‚O

Žν”—ρ‚Ν(1/2,8,1/2,3,3)

