■大円弧多面体(その148)
三角形ABCの各辺を1:λの比に順次内分した点P,Q,Rとし,AP,BQ,CRの2本ずつの交点が作る三角形LMNを仮に「縮小三角形」と呼ぶことにする.正三角形の縮小三角形は正三角形である.
λ=CP/PB=AQ/QC=BR/RA
[Q1]縮小三角形がもとの三角形と相似になることがあるか? あるとすればどのような場合か?
[ヒント]与えられた三角形の各辺をλ:1,μ:1,ν:1に分ける位置に点をとって対頂点と結んで作った三角形の面積は,もとの三角形の面積の
M=(λμν−1)^2/(λμ+λ+1)(μν+μ+1)(νλ+ν+1)
倍に等しくなる.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[Q2]三角形ABCの各辺を1:λの比に順次分けた点P,Q,Rが作る三角形PQRがもとの三角形と相似になることがあるか? あるとすればどのような場合か?
[ヒント]与えられた三角形の各辺をλ:1,μ:1,ν:1に分ける位置に点をとって点同士を結んで作った三角形の面積は,もとの三角形の面積の
M=(λμν+1)/(λ+1)(μ+1)(ν+1)
倍に等しくなる.
===================================