■正多面体の正多角形断面(その342)

X=1+2cos(2π/7)

7(X^2-X+1)/(X^2+X+2)^2=1/(2cos(π/7))^2

半角公式を使えばいったん次数は下がると思われる

===================================

7(X^2-X+1)/(X^2+X+2)^2=1/2(1+cos(2π/7))

7(X^2-X+1)/(X^2+X+2)^2=1/2(1+(X-1)/2)

7(X^2-X+1)/(X^2+X+2)^2=1/(1+X)

7(X+1)(X^2-X+1)=(X^2+X+2)^2

cos(2π/9)の場合も右辺は同じ

===================================

y=X-1=2cos(2π/7)とおく.

x=y+1

7(y+2)((y^2+2y+1)-(y+1)+1))=((y+1)^2+(y+1)+2)^2

7(y+2)(y^2+y+1)=(y^2+3y+4)^2

7(y^3+y^2+y+2y^2+2y+2)=(y^4+9y^2+16+6y^3+24y+8y^2)

7(y^3+3y^2+3y+2)=(y^4+6y^3+17y^2+24y+16)

(y^4-y^3-4y^2+3y+2)=0

===================================

  θ=2π/9,9θ=2πより,

  cos(4θ+5θ)=1

  cos(4θ)=cos(5θ)

  cos(4θ)=2cos^22θ−1=8cos^4θ−8cos^2θ+1

  cos(5θ)=16cos^5θ−20cos^3θ+5cosθ

 したがって,cos2π/9を解とする方程式は

  8x^4−8x^2+1=16x^5-20x^3+5x

  16x^5-8x^4−20x^3+8x^2+5x-1=0

  16x^5-8x^4−20x^3+8x^2+5x-1=0

(x-1)(16x^4+8x^3-12x^2-4x+1)=0

y=2cos2π/9を解とする方程式は

  y^5/2-y^4/2−5y^3/2+2y^2+5y/2-1=0

  y^5-y^4−5y^3+4y^2+5y-2=0

(16x^4+8x^3-12x^2-4x+1)=0

y^4+y^3-3y^2-2y+1=0

===================================

  cos(2θ)=cos(3θ)としても次数が合わない

x=cos2π/6=1/2を解とする方程式は

  2x-1=0

y=2cos2π/6を解とする方程式は

  y-1=0

===================================

(X-1)/2=cos(2π/6)

x0=0, x1=1, x2=X

x3=X(x2-x1)+x0=X^2-X=X

x4=X(x3-x2)+x1=X^3-2X^2+1=1 

x5=X(x4-x3)+x2=X^4-3X^3+X^2+2X=0

x6=1

Σxi=2X+2 

===================================

f(x)/(2X+2)^2=1/(1+X)

(X+1)f(x)=(2X+2)^2

===================================

x=y+1

(y+2)f(y)=(2(y+1)+2)^2=(2y+4)^2=4y^2+16y+16

4y^2+16y+16-(y+2)f(y)=0

これが

y-1=0,y^2-2y+1=0,4y^2-8y+4=0

に等しい。

24y+12-(y+2)f(y)=0・・・NG

(y+2)(・・・)=0

16(y+2)(y^2+y)

===================================

y=x-1

16(x+1)(x^2-2x+1+x+1)

16(x+1)(x^2-x+2)

===================================

16(x^2-x2)/(2x^2+2)^2=1/(X+1)

===================================