■制限のある分割から(その19)

 n=243の場合,p(243)=133978259344888に対して

  p(n)〜exp(π√(2n/3))/4n√3〜1.38×10^14

 ラマヌジャンはp(n)が満たす合同式について

  p(5n+4)=0  mod5

  p(7n+5)=0  mod7

  p(11n+6)=0  mod11

  p(599)=0  mod5^3

  p(721)=0  mod11^2

  p(25m+24)=0  (mod5^2)

  p(125m+99)=0  (mod5^3)

  p(49m+47)=0  (mod7^2)

を予想し,それらを証明しています.

===================================

【5】粗い近似と詳しい近似

 p(100)=190569292

[1]p(n) 〜 1/4n√(3)exp(π√(2n/3))(1+O(n^-1/2)

 p(100)〜1.993×10^8

[2]p(n) 〜 1/4n√(3)exp(π√(2n/3))(1−1/π・√3/2n)(1+O(xexp(−π√(n/6))

  ここで,n←n−1/24

 p(100)〜1.90568944.783

===================================

 ここで,p(n)はオイラーの分割関数とも呼ばれますが,定義が簡単そうにみえるにも関わらず,分割数を表す簡単な公式はありません.p(n)の正確な公式は,ラーデマッハーの公式(1937年)

  p(n)=1/π√2ΣAk(n)k^(1/2){d/dxsinh(π(2/3(x-1/24))^(1/2)/(x-1/24)^(1/2))

によって与えられます.ここで,Ak(n)は1の24乗根をもちいて明示的に与えることができます.

===================================

【2】分割数の近似式

 p(n)を評価する問題は数論において研究されていて,ラマヌジャンが予想した注目すべき漸近近似式

  p(n) 〜 1/4n√(3)exp(π√(2n/3))

は,1918年,ハーディーとラマヌジャンによって,円周法を用いて証明が与えられています.

 実は,円周法に基づく漸近公式の結果を正確に証明するだけでも,長くてこみ入った理論が必要になります.そこで漸近公式の概要だけを簡単に述べますが,σ(k)をkの約数の和とすると,p(n)に対する漸化式

  p(n)=1/nΣσ(k)p(n-k)

において,σ(k)の漸近的振る舞い

  1/n^2Σσ(k)〜π^2/12

を用いると,nが大きい場合の分割数の漸近挙動

  p(n)〜exp(π√(2n/3))/4n√3

を得ることができます.このことから,p(n)は準指数関数と考えることができます(p(n)^(1/n)→1).

 その後,分割関数はラーデマッハーによって修正され,完全な明示公式

  p(n)=1/π√(2)Σk^(1/2)Ak(n)d/dn{sinh(πλn√(2/3))/λn}

  λn=√(n-1/24),Ak(n)には1の24乗根が関係する

が与えられました(1937年).

 分割関数の母関数

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

は,本質的にモジュラー形式を与えるので,ラーデマッハーはその保型性から明示公式にたどりついたのですが,ハーディーとラマヌジャンはその第一近似式を得たことになります.

===================================