■無限級数(その15)

【4】無限級数(4)

Σanの絶対値級数Σ|an|が収束するとき,Σanは絶対収束するという.また,Σanは収束するが,Σ|an|は収束しない級数は,条件収束するという.

 さて,メルカトール級数

  1/1−1/2+1/3−1/4+・・・→log2 

は調和級数

  1/1+1/2+1/3+1/4+・・・→ +∞

の交代級数である.この値は対数関数のテイラー展開

  log(1+x)=x−1/2x2 +1/3x3 −1/4x4 +・・・

においてx=1とおくと得られる.

===================================

 

ところで,交代級数では,元の級数の項の順番を変えると収束値が変動してしまうことが知られている.たとえば,負項を正項に変えて,あとでその2倍を引くと,

 1/1−1/2+1/3−1/4+・・・

=(1/1+1/2+1/3+1/4+・・・)−2(1/2+1/4+1/6+1/8+・・・)

=(1/1+1/2+1/3+1/4+・・・)−(1/1+1/2+1/3+1/4+・・・)

=0

 また,この交代級数は奇数の逆数と偶数の逆数に−1をかけたものからできているが,足し合わせる順序が違う級数,たとえば,負の項が2つの連続する正の項をはさんで現れる級数:

  {1/1+1/3−1/2}+{1/5+1/7−1/4}+・・・

では3/2log2に収束する.

また,正の項に引き続いて負の項が2つの連続する級数:

  {1/1−1/2−1/4}+{1/3−1/6−1/8}+・・・

は1/2log2に収束することがわかっている.

(証明)

  {1/1−1/2−1/4}+{1/3−1/6−1/8}+・・・

  =1/2log2を示す.

 与えられた級数は

 Σ{1/(2n−1)−1/2(2n−1)−1/(2(2n−1)+2)}

=Σ{1/(4n−2)−1/4n}

 一方,1/1−1/2+1/3−1/4+・・・=log2より

1/2log2=1/2−1/4+1/6−1/8+・・・

       =(1/2−1/4)+(1/6−1/8)+・・・

       =Σ{1/(4n−2)−1/4n}

 これらは無限のパラドックスの一つの例である.有限級数ならば,足し算の順序に入れ替えは自由にできるが,無限級数となると話はまったく違ってくる.正の項と負の項がいずれも絶対収束するとき,級数の和の順番は勝手に変えてもよいのであるが,そうでない場合は,足す順序によっては級数の和が異なってくる.実は,条件収束級数の場合,級数の項の順番を適当に変えるとどんな値にでも収束させることができることが知られている.

===================================

一般に,

  1/1−1/2+1/3−1/4+・・・=log2

の項の順序を,正の項をm個,負の項をn個ずつ交互に並べ替えてできる級数の和は

  log2+1/2・logm/n となる.

[1]m=2,n=1→3/2log2

[2]m=1,n=2→1/2log2

すなわち,この級数は項を足す順序を変えるだけで,カメレオンのようにどんな値にでも・・・297.126でも−42πでも0でもお好みの実数になれるのである.たとえば,0にしたいならば

  2log2+logm/n=0→m=1,n=4

 有限の和ではこのようなことは絶対に起こらないが,無限の和では加法の交換法則が成り立たないような,想像もつかない奇妙なことが起こるのである.

===================================