■モーデル・ファルティングスの定理(その2)

 2次曲線のように有理点全体を1つの変数でパラメータ表示できる曲線を種数が0の曲線(有理曲線)と呼びます.

 与えられた曲線が有理曲線かどうかを判定するには曲線の種数を求めればよく,それが0なら有理曲線になります.一方,種数が1である曲線に楕円曲線があります.

 2次曲線はすべて有理曲線ですが,楕円曲線は有理曲線でないことが知られています.すなわち,円錐曲線の有理点は無限ですが,楕円曲線の有理点は有限です.

 次数が高いとき曲線は見かけ上複雑になりますが,その曲線の「種数」が小さければ,曲線は双有理変換で簡単なものになります.その意味で,次数よりも種数の方が曲線の本質的な複雑さを表現していると考えられます.

 たとえば,モーデル・ファルティングスの定理(1983)とは,「種数が2以上の代数曲線(超楕円曲線)は有理点を有限個しかもたない.」というものです.したがって,有理点が無数にあるような曲線は種数が0か1ということになり,直線(種数0)か,円錐曲線(種数0)か,楕円曲線(種数1)に限られてきます.

 また,リーマン・フルヴィッツの公式より,フェルマー曲線x^n+y^n=1は種数が(n−1)(n−2)/2で,これはn=3のとき1ですが,n≧4のときは2以上となりますから,そこでフェルマーの予想を征するために必要となるのが楕円曲線であったというわけです.

 朝日新聞デジタル(2019年10月24日)にモーデル・ファルティングスの定理と関係する「60年解けなかった数学の難題 世界中のPCつなぎ解決」という記事が掲載された.]

 その記事によると・・・

====================================

 世界中のパソコン50万台をネットワークでつなぎ、スーパーコンピューターをも超える能力で計算させることで、未解明だった数学の難問を解決することに欧米の数学者が成功した。

 ある整数を3乗した数(立方数)を三つ、足したり引いたりして1〜100を作る問題で、最後まで残っていた42となる三つの組み合わせが64年目にしてついに見つかった。

 この問題は1950年代、英国の数学者ルイス・モーデルが考え出した。例えば、1の3乗+1の3乗+1の3乗は3になる。4、4、−5の組み合わせでもそれぞれ3乗して足すと、64+64−125となって合計は3になる。

 モーデルは論文で「この2通り以外に3をつくれる組み合わせがあるのか、私には分からない。見つけるのは非常に難しいに違いない」と記した。

 1955年には、3だけでなく、三つの数字を組み合わせて1〜100の数をすべてつくれるか、という問題に発展した。整数論の重要な定理「モーデル予想」を提案した大数学者の問いかけとあって、世界中の数学者が色めき立って考え始めた。

 手計算で手に負えなくなると、コンピューターによって手当たり次第に探されるようになり、2016年までに33と42を除くすべての答えが出た。13や14のように、9で割って余りが4か5になる数には答えがないこともわかった。

====================================