< L(3)n分割固有方程式の判別式の値 >

L(3)n分身の値を解に持つ固有方程式の判別式の値を求めたので、報告したい。

L(3) は、L(s) ゼータの s=3 のもので、次のものである。

$$L(3) = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 + \cdot \cdot = \pi^3/32$$
 -----(1)

まず復習から。

L(1)n分身の値を解に持つ次の固有方程式の判別式の値は、(その122)で求めた通り以下のものとなった。

[L(1)分割におけるn分身の値を解にもつ固有方程式]

- 1分身の値を解に持つ方程式⇒ x-1=0
- 2分身の値を解に持つ方程式⇒ x²-2x-1=0
- 3分身の値を解に持つ方程式⇒ x³-3x²-3x +1=0
- 4分身の値を解に持つ方程式⇒ x⁴ -4x³ -6x² +4x +1=0
- 5分身の値を解に持つ方程式⇒ x⁵ -5x⁴ -10x³ +10x² +5x -1=0
- 6分身の値を解に持つ方程式⇒ x⁶ -6x⁵ -15x⁴ +20x³ +15x² -6x -1=0
- 7分身の値を解に持つ方程式⇒ x⁷ -7x⁶ -21x⁵ +35x⁴ +35x³ -21x² -7x +1=0

.

上記 L(1) n 分割の固有方程式の判別式の値 D。は次のようになる。

$$D_n = 2^{(n-1)^2} n^n$$
 -----2

このように非常にきれいな形になった。

では、L(3)n分身の値を解に持つ固有方程式の判別式の値はどうなるだろうか?

[L(3)分割におけるn分身の値を解にもつ固有方程式]

- 1分身を解にもつ固有方程式 ⇒ x -2=0
- 2分身を解にもつ固有方程式 ⇒ x²-16x-8=0
- 3分身を解にもつ固有方程式 ⇒ x³-54x²-96x+32=0
- 4分身を解にもつ固有方程式 ⇒ x⁴ -128x³ -544x² +512x +128=0
- 5分身を解にもつ固有方程式 ⇒ x⁵ -250x⁴ -2080x³ +4000x² +2560x -512=0
- 6分身を解にもつ固有方程式 ⇒ x⁶ -432x⁵ -6216x⁴ +20992x³ +25344x² -12288x -2048=0

.

今回、これらの固有方程式の判別式の値を求めた。

一般の代数方程式 $f(x) = a_0 X^n + a_1 X^{n-1} + a_2 X^{n-2} + \cdots + a_n = 0$ -----③の判別式は、次のように定義される。

f(x) = 0 の解を $\alpha_1, \alpha_2, \alpha_3, \cdot \cdot \cdot \alpha_n$ とすると、

$$D = a_0^{n(n-1)} \prod_{i < i} (\alpha_i - \alpha_i)^2$$
 ———

よって例えば、<4分身を解に持つ方程式> x^4 $-128x^3$ $-544x^2$ +512x +128=0 ----⑤ の四つの解を α_1 , α_2 , α_3 , α_4 とすると、⑤の判別式は④から次となる。

$$D = (\alpha_4 - \alpha_3)^2 (\alpha_4 - \alpha_2)^2 (\alpha_4 - \alpha_1)^2 (\alpha_3 - \alpha_2)^2 (\alpha_3 - \alpha_1)^2 (\alpha_2 - \alpha_1)^2$$

(その127)でのL(3)4分割の下記の結果を参考にして、⑤の四つの解は次となる。

B1 から⇒
$$\alpha_1 = \sin(7\pi/16)/\cos^3(7\pi/16)$$

-B2 から⇒
$$\alpha_2$$
=- $\sin(5\pi/16)/\cos^3(5\pi/16)$

B3 から⇒
$$\alpha_3 = \sin(3\pi/16)/\cos^3(3\pi/16)$$

-B4 から
$$\alpha_4$$
=-sin($\pi/16$)/cos³($\pi/16$)

(その127) より抜粋 (一部略)。

■L(3) 4 分割

B1 =
$$1 - 1/15^3 + 1/17^3 - 1/31^3 + 1/33^3 - 1/47^3 + \cdots = (\pi/16)^3 \sin(7\pi/16)/\cos^3(7\pi/16)$$

B2 = $1/3^3 - 1/13^3 + 1/19^3 - 1/29^3 + 1/35^3 - 1/45^3 + \cdots = (\pi/16)^3 \sin(5\pi/16)/\cos^3(5\pi/16)$
B3 = $1/5^3 - 1/11^3 + 1/21^3 - 1/27^3 + 1/37^3 - 1/43^3 + \cdots = (\pi/16)^3 \sin(3\pi/16)/\cos^3(3\pi/16)$

B4=
$$1/7^3$$
 - $1/9^3$ + $1/23^3$ - $1/25^3$ + $1/39^3$ - $1/41^3$ + • • = $(\pi/16)^3 \sin(\pi/16) / \cos^3(\pi/16)$

B1 -B2 +B3 -B4=L(3) = $\pi^3/32$ である。B1, -B2, B3, -B4 が L(3) の 4 分身である。

上記 α_1 , α_2 , α_3 , α_4 と⑥から固有方程式⑤の判別式の値 D_4 を計算すると、次となった。 D_4 =5660234857054208= $2^{29} \cdot 17^2 \cdot 191^2 = 2^{21} \cdot 17^2 \cdot 191^2 \cdot 4^4$

2分割から6分割までの結果を素因数分解の形で示すと、次のようになる。

[L(3)n分割の固有方程式の判別式の値](2分割から6分割まで)

- 2 分割⇒D₂=2⁵·3²
- 3 分割⇒D₃=2¹⁴·3³·11²
- 4 分割⇒D₄=2²⁹·17²·191²
- 5 分割⇒D₅=2⁴⁴·5⁵·179²·421²
- 6 分割⇒D₆=2⁶¹·3¹⁶·5²·11²·17²·23²·431²

このようになった。突如として出てくる大きな素数 191, 179, 421, 431 は何か意味があるのだろうか。

上記において L(1) 判別式の値②との類推から、L(3) でも $\underline{n^n}$ の規則が出ているはず!と思ったので、 $\underline{n^n}$ を赤字でくくり出して表現した結果を次に示す。

[L(3)n分割の固有方程式の判別式の値](2分割から6分割まで)

- 2 分割⇒D₂=2³·3²·2²
- 3 分割⇒D₃=2¹⁴·11²·3³
- 4 分割⇒D₄=2²¹·17²·191²·4⁴
- 5 分割⇒D₅=2⁴⁴·179²·421²·5⁵
- 6 分割⇒D₆=2⁵⁵·3¹⁰·5²·11²·17²·23²·431²·6⁶

例えば、D₆は、

 $D_6 = 2^{55} \cdot 3^{10} \cdot 5^2 \cdot 11^2 \cdot 17^2 \cdot 23^2 \cdot 431^2 \cdot 6^6 = 8527137089356054643921825874106436812800$ というとてつもない数になる。計算は高精度計算サイトを使って行った。

https://keisan.casio.jp/calculator

赤字を見ると L(3) でも n^n の規則が出ていることがわかる。しかし次の L(1) の②のような簡明な表式を出すのは無理である。 n^n の他になにか規則性はないのだろうか。

[L(1)n分割の固有方程式の判別式の値]

$$D_n = 2^{(n-1)^2} n^n$$
 -----2

以上のように、L(1) や $\xi(2)$ に比べて、L(3) 判別式値はもっと複雑なものになった。

最後に($\underline{co122}$)でのL(1)判別式値、($\underline{co123}$)の \underline{c} (2)判別式値、そして今回のL(3)判別式値を比較する形でまとめておこう。 \mathbf{n}^n を赤字で表した。

[L(1)n分割の固有方程式の判別式の値](2分割から7分割まで)

- 2 分割⇒D₂=2·2²
- 3分割⇒D₃=2⁴·3³
- 4 分割⇒D₄=2^{9·44}
- 5分割⇒D₅=2¹⁶·5⁵
- 6分割⇒D₆=2²⁵·6⁶
- 7 分割⇒D₇=2³⁶·7⁷

. . .

上記は次のように公式化できる (予想)。

$$D_n = 2^{(n-1)^2} n^n$$

[と(2)n 分割の固有方程式の判別式の値](2分割から7分割まで)

- 2 分割⇒D₂=2³·2²
- 3 分割⇒D₃=2¹⁰ · 3³
- 4 分割⇒D₄=2²¹ · 4⁴
- 5 分割⇒D₅=2³⁶·5⁵
- 6分割⇒D₆=2⁵⁵ · 6⁶
- 7 分割⇒D₇=2⁷⁸ 7⁷

. . .

上記は次のように公式化できる(予想)。

$$D_n = 2^{(2n-1)(n-1)}n^n$$

- [L(3)n分割の固有方程式の判別式の値](2分割から6分割まで)
 - 2 分割⇒D₂=2³·3²·2²
 - 3 分割⇒D₃=2¹⁴·11²·3³
 - 4 分割⇒D₄=2²¹·17²·191²·4⁴
 - 5 分割⇒D₅=2⁴⁴ · 179² · 421² · 5⁵
 - 6 分割⇒D₆=2⁵⁵·3¹⁰·5²·11²·17²·23²·431²·6⁶

. . . .

なんらかの規則性は?

L(3) n 分割もなんらかの規則でもって表現できるのだろうか。L(1) と ζ (2) は似ており、対の関係があるように見える。

もしかしたらL(3)も、 $\mathcal{E}(4)$ を見ることで見えてくるものがあるのかもしれない。

2019.9.27 杉岡幹生