■2次の無理数(その4)

 一般に,√mの連分数展開は循環連分数となり周期性が証明されます.これは既約分数の小数展開が循環小数になることと対比するとおもしろい事実です.その際,

  √m=[q0;q1,q2,・・・,qn-1,2q0,・・・]

という周期nの連分数展開が得られます.

  √2=[1;2,・・・]

  √3=[1;1,2,・・・]

  √5=[2;4,・・・]

  √6=[2;2,4,・・・]

  √7=[2;1,1,1,4,・・・]

すなわち,どの循環節もqn=2q0=[2√m]で終わっています.

 たとえば,√199の展開

  √199=[14;9,2,1,2,2,5,4,1,1,13,1,1,4,5,2,2,1,2,9,28,・・・]

14で始まり28で終わるというのもこの理由によります.

 このように,標準無限連分数のうち,部分分母列のあるところから先が巡回的になる循環連分数は2次の無理数(整数係数の2次方程式の解として表される数)に収束します.この性質により,整数項の標準連分数はいわゆるペル方程式:x^2−my^2=d(多くは±1,±4)の解法など整数論の分野で活用されます.

 また,√199の循環節の最後の28を除くと13を中心として対称になっていることにも気付かされます.

  √43=[6;1,1,3,1,5,1,3,1,1,12,・・・]

  √54=[7;2,1,6,1,2,14,・・・]

  √76=[8;1,2,1,1,5,4,5,1,1,2,1,16,・・・]

  √94=[9;1,2,3,1,1,5,1,8,1,5,1,1,3,2,1,18,・・・]

  √1000=[31;1,1,1,1,1,6,2,2,15,2,2,6,1,1,1,1,1,62,・・・]

 循環部の最後の項を除いた部分は回文(前から読んでも後から読んでも同じ)になっているという事実も,199のみならず,2次の無理数√mに共通していえる性質です.

  √m=[q0;q1,q2,・・,q2,q1,2q0,・・・]

===================================