■1.26次元の雪

 正方形は,その半分のサイズの4つの正方形の集合であり,その次元はlog4/log2=2,立方体は,その半分のサイズの8つの立方体の集合であり,その次元はlog8/log2=3である.

 フラクタルが登場するまで,図形の次元は1か2か3に限られていた.幾何学では分数次元を想像することも可能であるが,中でも有名なのは「コッホ雪片」である.コッホ雪片ではまず1辺の長さ1の正三角形を描く.それぞれの辺を3等分し,真ん中の部分を取り除く.そこに同じ長さの辺でできたV字型を置く.この操作を何回も繰り返すと,雪の結晶のような形になる.そのフラクタル次元は?

[1]コッホ曲線はハウスドルフ次元log4/log3をもつ.

===================================

 コッホ曲線では1回の操作ごとに全体の長さは1/3ずつ増えるので,n回後の長さは(4/3)^nである.この曲線は1次元の線ではない.また,同時に2次元でもない.そこで,このような曲線はフラクタル次元をもつといわれ,その次元は

  log4/log3=1.26

で,線の次元よりは上だが,面の次元よりは下になる.

 方眼紙を1枚もってきてこの図形にかぶせ,この図形を覆っているマス目の個数を数える.つぎにマス目の大きさを半分にした方眼紙で同じことを繰り返す.もとの図形が線であればマス目の数は2=2^1倍に,面であればマス目の数は4=2^2倍に増える.

 コッホ曲線では,マス目の大きさを1/3にした方眼紙で同じことを繰り返すと画素数は4倍になるから,

  3^d=4→d=log4/log3=1.26

マス目の大きさを半分にした方眼紙であれば,2^1.26倍に増えるのである.

 周長は1回の操作ごとに1/3ずつ増えるので,n回後の長さは(4/3)^n→∞である.また,無限に繰り返した結果できるフラクタル図形の面積は

  S=√3/4+√3/4・(1/3)^2・3+√3/4・(1/9)^2・3・4+√3/4・(1/27)^2・3・4・4+・・・=√3/4+√3/12/(1−4/9)=√3/4+3√3/20=2√3/5である.つまり,無限の周囲が有限の面積(元の三角形の面積の1.6倍)を囲んでいることになる.

===================================