■サマーヴィルの等面四面体(その808)

△3(0,0,0,0),(−3,1,1,1),(−2,−2,2,2),(−1,−1,−1,3)

△4を

P0(0,0,0,0,0)

P1(−3,1,1,1,h)

P2(−2,−2,2,2,2h)

P3(−1,−1,−1,3,3h)

P4(0,0,0,0,0,4h)のほうが自然である.

===================================

  P0P1^2=12+h^2

  P0P2^2=16+4h^2

  P0P3^2=12+9h^2

  P0P4^2=16h^2

  P1P2^2=12+h^2

  P1P3^2=16+4h^2

  P1P4^2=12+9h^2

  P2P3^2=12+h^2

  P2P4^2=16+4h^2

  P3P4^2=12+h^2

16+4h^2(3)

12+h^2(4)<12+9h^2(2)

16h^2(1)

ここで,

  16h^2=12+h^2,12+9h^2=16+4h^2,h^2=4/5

ならば△4は

  P0P1=P1P2=P2P3=P3P4=2

  P0P2=P1P3=P2P4=√6

  P0P3=P1P4=√6

  P0P4=2

===================================