■ある無限級数(その143)

 (その135)のやり直し.

1/(1^2+a^2) + 1/(2^2+ a^2) + 1/(3^2+ a^2) + 1/(4^2+

a^2) +・・・

=-1/(2a^2) + (π/(2a))・(e^(2aπ)+1)/( e^(2aπ)-1)

=-1/(2a^2) + (π/(2a))/tanh(aπ)

=-1/(2a^2) − (π/(2|a|))/tan(|a|π)  (aが純虚数のとき)

a=i/6を代入すると

左辺=1/(1^2−1^2/6^2)+1/(2^2−1^2/6^2)+1/(3^2−1^2/6^2)+・・・

=3{{1/(1−1/6)−1/(1+1/6)}+{1/(2−1/6)−1/(2+1/6)}+{1/(3−1/6)−1/(3+1/6)}+・・・}

=3{{1/(5/6)−1/(7/6)}+{1/(11/6)−1/(13/6)}+{1/(17/6)−1/(19/6)}+・・・}

=18{{1/5−1/7}+{1/11−1/13}+{1/17−1/19+・・・}

=18Σ{1/(6k−1)−1/(6k+1)}

右辺=18−(3π)/tan(π/6)

Σ{1/(6k−1)−1/(6k+1)}=1−π/6/tan(π/6)

===================================

a=2i/6を代入すると

左辺=1/(1^2−2^2/6^2)+1/(2^2−2^2/6^2)+1/(3^2−2^2/6^2)+・・・

=3/2{{1/(1−2/6)−1/(1+2/6)}+{1/(2−2/6)−1/(2+2/6)}+{1/(3−2/6)−1/(3+2/6)}+・・・}

=3/2{{1/(4/6)−1/(8/6)}+{1/(10/6)−1/(14/6)}+{1/(16/6)−1/(20/6)}+・・・}

=9{{1/4−1/6}+{1/10−1/14}+{1/16−1/20)+・・・}

=9Σ{1/(6k−2)−1/(6k+2)}

右辺=9/2−(3π/2)/tan(2π/6)

Σ{1/(6k−2)−1/(6k+2)}=1/2−(π/6)/tan(2π/6)

===================================

a=3i/6を代入すると

左辺=1/(1^2−3^2/6^2)+1/(2^2−3^2/6^2)+1/(3^2−3^2/6^2)+・・・

={{1/(1−3/6)−1/(1+3/6)}+{1/(2−3/6)−1/(2+3/6)}+{1/(3−3/6)−1/(3+3/6)}+・・・}

={{1/(3/6)−1/(9/6)}+{1/(9/6)−1/(15/6)}+{1/(15/5)−1/(21/6)}+・・・}

=6{{1/3−1/9}+{1/9−1/15}+{1/15−1/21)+・・・}

=6{1/(6k−3)−1/(6k+3)}

右辺=2−(π)/tan(3π/6)

Σ{1/(6k−3)−1/(6k+3)}=1/3−π/6/tan(3π/6)

===================================

a=4i/6を代入すると

左辺=1/(1^2−4^2/6^2)+1/(2^2−4^2/6^2)+1/(3^2−4^2/6^2)+・・・

=3/4{{1/(1−4/6)−1/(1+4/6)}+{1/(2−4/6)−1/(2+4/6)}+{1/(3−4/6)−1/(3+4/6)}+・・・}

=3/4{{1/(2/6)−1/(10/6)}+{1/(8/6)−1/(16/6)}+{1/(14/6)−1/(22/5)}+・・・}

=18/4{{1/2−1/10}+{1/8−1/16}+{1/14−1/22)+・・・}

=18/4{1/(6k−4)−1/(6k+4)}

右辺=9/8−(3π/4)/tan(4π/6)

Σ{1/(6k−4)−1/(6k+4)}=1/4−π/6/tan(4π/5)

===================================

a=5i/6を代入すると

左辺=1/(1^2−5^2/6^2)+1/(2^2−5^2/6^2)+1/(3^2−5^2/6^2)+・・・

=3/5{{1/(1−5/6)−1/(1+5/6)}+{1/(2−5/6)−1/(2+5/6)}+{1/(3−5/6)−1/(3+5/6)}+・・・}

=3/5{{1/(1/6)−1/(11/6)}+{1/(7/6)−1/(17/6)}+{1/(15/6)−1/(23/5)}+・・・}

=18/5{{1/1−1/11}+{1/7−1/17}+{1/15−1/23)+・・・}

=18/5{1/(6k−5)−1/(6k+5)}

右辺=18/25−(3π/5)/tan(5π/6)

Σ{1/(6k−5)−1/(6k+5)}=1/5−π/6/tan(5π/6)

===================================

 6の倍数の項のない交代級数

Σ{1/(6k−5)−1/(6k−4)+1/(6k−3)−1/(6k−2)+1/(6k−1)−1/(6k+1)+1/(6k+2)−1/(6k+3)+1/(6k+4)−1/(6k+5)}=

+1/5−π/6/tan(5π/6)

−1/4+π/6/tan(4π/6)

+1/3−(π/5)/tan(3π/6)

−1/2+π/6/tan(2π/6)

+1−π/6/tan(2π/6)

===================================