■サマーヴィルの等面四面体(その550)

 (その372)において,

  P1(0,0,0)

  P2(m/√2,m√3/√2,0)

  P3(2m/√2,0,0)

  P1P2=P2P3=m√2

  P1P3=m√2

を満たす.

  P0(0,0,0)

  P1(0,0,3h)

  P2(m/√2,m√3/√2,2h)

  P3(2m/√2,0,h)

とおくと

  P0P1^2=9h^2

  P0P2^2=2m^2+4h^2

  P0P3^2=2m^2+h^2

  P1P2^2=2m^2+h^2

  P1P3^2=2m^2+4h^2

  P2P3^2=2m^2+h^2

2m^2+h^2(3)<2m^2+4h^2(2)

9h^2(1)

  P0(0,0,0)

  P1(0,0,3h)

  P2(m/√2,m√3/√2,h)

  P3(2m/√2,0,2h)

とおいたら,

  P0P1^2=9h^2

  P0P2^2=2m^2+h^2

  P0P3^2=2m^2+4h^2

  P1P2^2=2m^2+4h^2

  P1P3^2=2m^2+h^2

  P2P3^2=2m^2+h^2

2m^2+h^2(3)<2m^2+4h^2(2)

9h^2(1)で変わらない.

ここで,

  9h^2=2m^2+4h^2=6,

  2m^2+h^2=4,h^2=2/3,m^2=5/3

2m^2=5h^2ならば

  P0P1^2=9h^2

  P0P2^2=6h^2

  P0P3^2=9h^2

  P1P2^2=9h^2

  P1P3^2=6h^2

  P2P3^2=6h^2

これでは2:√6になった.

===================================