■中央二項係数の逆数和(その7)

 興味深いのは,アペリの証明が最先端の研究結果を使ったものではなく,オイラーが解決していたとしても不思議はないとされるような200年前にはすでにわかっていた定理や手法のみでの証明だったことです.

 ζ(3)が無理数であるという証明が発表されたとき,学会場はどよめきの渦に包まれ騒然となったそうですが,アペリは非常に話し下手であり,参加者の多くは半信半疑というよりは懐疑的であったと伝えられています.アペリはマイナーな数学者とされていますが,今から考えると当時主流だった秀才数学者集団,ブルバキに押しつぶされた個性豊かな人物だったようです.

===================================

 1979年,程なく,ボイカーズは周期積分の原理を用いた証明を見つけました.ある数が周期であるとは「代数的係数多項式で与えられる領域c上で,代数係数の代数的関数の積分として表される」ことをいいます.→コラム「数にまつわる話」参照

 たとえば,積分

  I=∫(0,1)∫(0,1)1/(1−xy)dxdy/√xy

において,1/(1−xy)を幾何級数として展開し,項別積分すると

  I=Σ1/(n+1/2)^2

 このとき,

  1+1/3^2+1/5^2+1/7^2+・・・

の値が必要になりますが,この値はζ(2)=Σ1/n^2から次のようにして求まります.

  1+1/2^2+1/3^2+1/4^2+・・・

 =(1+1/2^2+1/4^2+・・・)(1+1/3^2+1/5^2+・・・)

 =1/(1−1/4)・(1+1/3^2+1/5^2+・・・)

分母を奇数のベキ乗だけにすると一般式は

  {1-2^(ーs)}ζ(s)

となるのです.したがって,

  ∫(0,1)∫(0,1)1/(1−xy)dxdy/√xy=(4−1)ζ(2)

 さらにζ(3)は,c:0<x<y<z<1として

>  ζ(3)=∫(c)dxdydz/(1−x)yz

 このように,s≧2のすべての整数でのζ(s)値は周期になることがわかっていますが,ボイカーズはアペリの論じている考えを土台にして,

  |anζ(3)−bn|<α^(-n)

を導き出しました.

 さらに一歩進んで,数列{an}と{bn}に,重さ2となる保型形式的解釈を与えることによる証明もあるようです.エレガントな証明ですが,解説するには荷が重い・・・生兵法はけがのもと.

===================================