■連続数のピタゴラス三角形(その41)

 √2に収束する高次分数列を考える.

  p/q→(p^2+2q^2)/2pq

  p/q→(p^3+6pq^2)/(3p^2q+2q^2)

  p/q→(p^4+12p^2q^2+4q^4)/4pq(p^2+2q^2)

  p/q→(p^5+20p^3q^2+20pq^4)/(5p^4q+20p^2q^3+4q^5)

  p/q→(p^6+30p^4q^2+60p^2q^4+8q^6)/(6p^5q+40p^3q^3+24pq^5)

は驚異的なスピードで√2に近づきます.

===================================

  p/q→(p^2+aq^2)/bpq

において,P=p^2+aq^2,Q=bpqとおいた場合,

  P^2−2Q^2=p^4+(2a−2b^2)p^2q^2+a^2q^2=(p^2−2q^2)^2=1

連立2次方程式

(2a−2b^2)=−4

a^2=4

→a=2,b=2  (OK)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

P=(p^3+apq^2)=p(p^2+aq^2),

Q=(bp^2q+cq^3)=q(bp^2+cq^2)

  P^2−2Q^2=p^2(p^4+2ap^2q^2+a^2q^4)−2q^2(b^2p^4+2bcp^2q^2+c^2q^4)

=(p^6+2ap^4q^2+a^2p^2q^4)−(2b^2p^4q^2+4bcp^2q^4+2c^2q^6)

=p^6+(2a−2b^2)p^4q^2+(a^2−4bc)−2c^2q^6

=(p^2−2q^2)^3=1

連立2次方程式

(2a−2b^2)=−6

(a^2−4bc)=12

−2c^2=−8

c=2,b=3,a=6  (OK)

===================================